Wood

User avatar
WhatScience?
Member
Member
Posts: 394
Joined: July 16th, 2017, 4:03 pm
Division: C
State: NJ
Contact:

Wood

Postby WhatScience? » November 18th, 2017, 8:33 am

Hey Guys,

I was wondering if you guys could share some links as to where I can buy wood skinnier than the normal 1/8"...where do you guys go to buy good wood....Do you prefer sheets or pre cut into rods?
"When you clean your room, you are increasing the total chaos of the universe" - Hank Green Crash Course (Entropy)

Events 2018

Thermodynamics, Potions and Poisons, Disease Detectives, Optics, and Towers

Random Human
Member
Member
Posts: 152
Joined: August 26th, 2016, 11:39 am
Division: C
State: -
Location: Right behind you
Contact:

Re: Wood

Postby Random Human » November 18th, 2017, 1:33 pm

WhatScience? wrote:Hey Guys,

I was wondering if you guys could share some links as to where I can buy wood skinnier than the normal 1/8"...where do you guys go to buy good wood....Do you prefer sheets or pre cut into rods?

3/32 works fine.
Go online to specialized balsa
Precut is always more precise and accurate. Cutting is a hassle, in my opinion.
Random Human - Proud (former) Science Olympian. 2015-2017
Writer of Doers
Dynamic Planet
Breaker of Towers: 16-17 Season Peak Score - 3220
Len Joeris all the way. Remember Len.

Balsa Man
Coach
Coach
Posts: 1318
Joined: November 13th, 2008, 3:01 am
Division: C
State: CO
Location: Fort Collins, CO
Contact:

Re: Wood

Postby Balsa Man » November 18th, 2017, 2:02 pm

Random Human wrote:
WhatScience? wrote:Hey Guys,

I was wondering if you guys could share some links as to where I can buy wood skinnier than the normal 1/8"...where do you guys go to buy good wood....Do you prefer sheets or pre cut into rods?

3/32 works fine.
Go online to specialized balsa
Precut is always more precise and accurate. Cutting is a hassle, in my opinion.


I'm curious; you asked essentially the same question back on September 17, in the first "wood" thread you started, and you got a number of replies; is there something particular that didn't get answered??

Re: Random Human's comment that 3/32 "works fine", true up to a point. But you will not be able to beat a well engineered 1/8" leg tower with 3/32" legs. 5/32" legs will actually give you a slight theoretical advantage over 1/8". The problem applying that theoretical advantage is that it takes very low density, like down close to the limits of what balsa exists in, and finding, in that density, a few sticks that are at the upper end of buckling strength that can be found at that density. Talking 0.95 gr/36", with a 36" buckling strength over 22gr.
Len Joeris
Fort Collins, CO

User avatar
WhatScience?
Member
Member
Posts: 394
Joined: July 16th, 2017, 4:03 pm
Division: C
State: NJ
Contact:

Re: Wood

Postby WhatScience? » November 18th, 2017, 2:14 pm

@Balsa Man: My team just asked me to pose the question again because responses had died out and they wanted a little more info,

Adding on...do you think the 1/16" x 1/8" is a good option...how does it stack up against the others?
"When you clean your room, you are increasing the total chaos of the universe" - Hank Green Crash Course (Entropy)

Events 2018

Thermodynamics, Potions and Poisons, Disease Detectives, Optics, and Towers

User avatar
Unome
Moderator
Moderator
Posts: 3619
Joined: January 26th, 2014, 12:48 pm
Division: Grad
State: GA
Location: somewhere in the sciolyverse
Contact:

Re: Wood

Postby Unome » November 18th, 2017, 2:43 pm

WhatScience? wrote:Adding on...do you think the 1/16" x 1/8" is a good option...how does it stack up against the others?

Typically, pieces in compression gain nothing from rectangular cross-sections since they'll usually buckle in the weakest direction.
Userpage
Chattahoochee High School Class of 2018
Georgia Tech Class of 2022

Opinions expressed on this site are not official; the only place for official rules changes and FAQs is soinc.org.

Balsa Man
Coach
Coach
Posts: 1318
Joined: November 13th, 2008, 3:01 am
Division: C
State: CO
Location: Fort Collins, CO
Contact:

Re: Wood

Postby Balsa Man » November 18th, 2017, 4:07 pm

WhatScience? wrote:@Balsa Man: My team just asked me to pose the question again because responses had died out and they wanted a little more info,

Adding on...do you think the 1/16" x 1/8" is a good option...how does it stack up against the others?


That's cool; understand. The previous replies you got pretty well covered the options out there.. The only place I know of that you can order in 1/10 gr increments is Specialized Balsa. You can go to your local hobby store - Hobbytown, Michaels, etc., with a scale and sort thru what they have, ans if you get really lucky, you might find some sticks that are light while getting you the buckling strength needed (which will depend on the bracing interval you want to use).

No, rectangular leg cross section is not a good idea. It is actually a very bad idea. It is not that it will "usually" buckle in the weakest direction, it is that it absolutely always will. So, on two sides of the tower, you'd need a bracing interval that would work for 1/16" cross section, and on the other two sides, bracing that would work for 1/8". Those bracing intervals would not.....line up; you'd have some segments where a leg segment would only be braced from one side/one plane, instead of 2 braces at 90 degrees, at the same point on a leg. The buckling strength across the 1/16" dimension will be only 1/16th of the buckling strength across the 1/8" dimension.
Len Joeris
Fort Collins, CO

User avatar
Unome
Moderator
Moderator
Posts: 3619
Joined: January 26th, 2014, 12:48 pm
Division: Grad
State: GA
Location: somewhere in the sciolyverse
Contact:

Re: Wood

Postby Unome » November 18th, 2017, 5:52 pm

Balsa Man wrote:[So, on two sides of the tower, you'd need a bracing interval that would work for 1/16" cross section, and on the other two sides, bracing that would work for 1/8".

This was what I was trying to account for with "usually", although I didn't think about the fact that one would need varying bracing intervals.
Userpage
Chattahoochee High School Class of 2018
Georgia Tech Class of 2022

Opinions expressed on this site are not official; the only place for official rules changes and FAQs is soinc.org.

User avatar
WhatScience?
Member
Member
Posts: 394
Joined: July 16th, 2017, 4:03 pm
Division: C
State: NJ
Contact:

Re: Wood

Postby WhatScience? » November 18th, 2017, 7:05 pm

Unome wrote:
Balsa Man wrote:[So, on two sides of the tower, you'd need a bracing interval that would work for 1/16" cross section, and on the other two sides, bracing that would work for 1/8".

This was what I was trying to account for with "usually", although I didn't think about the fact that one would need varying bracing intervals.


makes sense....

What would be better, the 3/32 .6 or the 1/16 .3 (densities)
"When you clean your room, you are increasing the total chaos of the universe" - Hank Green Crash Course (Entropy)

Events 2018

Thermodynamics, Potions and Poisons, Disease Detectives, Optics, and Towers

Random Human
Member
Member
Posts: 152
Joined: August 26th, 2016, 11:39 am
Division: C
State: -
Location: Right behind you
Contact:

Re: Wood

Postby Random Human » November 18th, 2017, 7:54 pm

WhatScience? wrote:
Unome wrote:
Balsa Man wrote:[So, on two sides of the tower, you'd need a bracing interval that would work for 1/16" cross section, and on the other two sides, bracing that would work for 1/8".

This was what I was trying to account for with "usually", although I didn't think about the fact that one would need varying bracing intervals.


makes sense....

What would be better, the 3/32 .6 or the 1/16 .3 (densities)

Uh what do you mean what would be better. There's no better.
I mean in terms of strength, 3/32 .6
But, efficiency wise, it depends on your tower.
If your question was 1/16 .6 and 3/32 .6. The answer would be 3/32. More volume (assuming same density) > less volume


Please clarify. Read through last years forum. Bassically every question is answered there.

Random
Random Human - Proud (former) Science Olympian. 2015-2017
Writer of Doers
Dynamic Planet
Breaker of Towers: 16-17 Season Peak Score - 3220
Len Joeris all the way. Remember Len.

Balsa Man
Coach
Coach
Posts: 1318
Joined: November 13th, 2008, 3:01 am
Division: C
State: CO
Location: Fort Collins, CO
Contact:

Re: Wood

Postby Balsa Man » November 18th, 2017, 8:12 pm

WhatScience? wrote:
Unome wrote:
Balsa Man wrote:[So, on two sides of the tower, you'd need a bracing interval that would work for 1/16" cross section, and on the other two sides, bracing that would work for 1/8".

This was what I was trying to account for with "usually", although I didn't think about the fact that one would need varying bracing intervals.


makes sense....

What would be better, the 3/32 .6 or the 1/16 .3 (densities)


What do you mean, "better"?
Len Joeris
Fort Collins, CO

User avatar
WhatScience?
Member
Member
Posts: 394
Joined: July 16th, 2017, 4:03 pm
Division: C
State: NJ
Contact:

Re: Wood

Postby WhatScience? » November 18th, 2017, 8:13 pm

Balsa Man wrote:
WhatScience? wrote:
Unome wrote:This was what I was trying to account for with "usually", although I didn't think about the fact that one would need varying bracing intervals.


makes sense....

What would be better, the 3/32 .6 or the 1/16 .3 (densities)


What do you mean, "better"?


Which would be more efficient?? Would you say the weight matters more or the additional surface area
"When you clean your room, you are increasing the total chaos of the universe" - Hank Green Crash Course (Entropy)

Events 2018

Thermodynamics, Potions and Poisons, Disease Detectives, Optics, and Towers

shrewdPanther46
Member
Member
Posts: 400
Joined: October 9th, 2017, 6:25 pm
Division: C
State: NJ
Contact:

Re: Wood

Postby shrewdPanther46 » November 19th, 2017, 5:12 pm

WhatScience? wrote:
Balsa Man wrote:
WhatScience? wrote:
makes sense....

What would be better, the 3/32 .6 or the 1/16 .3 (densities)


What do you mean, "better"?


Which would be more efficient?? Would you say the weight matters more or the additional surface area

depends on ur tower as stated previously

theres no such thing as "better"
salty

Balsa Man
Coach
Coach
Posts: 1318
Joined: November 13th, 2008, 3:01 am
Division: C
State: CO
Location: Fort Collins, CO
Contact:

Re: Wood

Postby Balsa Man » November 20th, 2017, 8:39 pm

shrewdPanther46 wrote:
WhatScience? wrote:
Balsa Man wrote:
What do you mean, "better"?


Which would be more efficient?? Would you say the weight matters more or the additional surface area

depends on ur tower as stated previously

theres no such thing as "better"


Let me see if I can bring some clarity to this discussion. There is such a thing as “better” in the sense that there is some combination of leg wood and bracing wood that gets you to the lightest possible tower that will carry full load, or very close to it.
The design problem is figuring out what that combination is. So, weight matters, ultimately - you want to get to the lightest tower, you can that can carry close to full load. “Surface area” has… nothing to do with anything. Cross section does have something to do with it.

It is all about buckling strength.
The legs (actually the leg segments- by which I mean the upper, chimney leg segments, and the lower, base segments need to have enough buckling strength to carry the forces they come under when the tower is loaded. Let’s call that our “design strength.” As discussed previously, the forces on the chimney legs are less than the forces on the base legs, so you have to look at/analyze the upper and lower segments separately; they have different design strengths.

There is, at the heart of this design problem, a tradeoff going on that has to be figured out. With really stiff/heavy legs, to get to our ‘design strength’ you can use less bracing- that is, you can use a wider bracing interval, which means less bracing wood needed. With really light/less stiff- floppy legs, you have to go to a much tighter/closer bracing interval, which means more bracing wood. The question is, what combination of leg weight and bracing weight (and glue weight) gets you to the lightest tower weight that just gets you to the design strengths.

Yours is the second question in the last 2-3 weeks that goes to a very important factor in solving this design problem- how does the size - the cross section - of the legs affect buckling strength (and weight)? Before going into that, the short answer to your question- 3/32” legs at 0.6gr/36” will get you to a lighter tower weight that will carry near full load than 1/16” at 0.3gr/36”, and 1/8” legs at around 1.2gr/36” will get you to a lighter tower weight (that will carry full load) than the 3/32” legs will. Thinking that smaller cross section legs will get you higher tower efficiency is going in the wrong direction. As I’ve said before, as you go from small cross section to larger cross section, at the same density, the buckling strength goes up much faster than the weight goes up. Putting actual numbers to this… reality takes some fairly serious number crunching, though. Its not complicated math, You just need to be careful.

While I’ve gone over all the information that follows in previous posts, I’m going to re-cover some of this ground. A few days ago I was discussing with one of the students I’m working with how buckling works, and how we’re using that understanding to “engineer” and design our towers. We’d gone over all this before, and I thought he understood, but it became apparent that some really fundamental aspects had… just gone by over the top of his head. He was wondering the same thing you were- why don’t we just use smaller, lighter legs to get to a lighter tower. After circling back, and explaining those fundamental aspects, the light bulb went off; what we were doing, and how we were doing it, to design/engineer the towers, made sense, and the pieces fit together. The conversation went something like this:

Remember, at the outset of this discussion, that one of the very important aspects of what “engineering” is, and is all about, is developing and using approximations that “work” to design and create… something physical, for a given use. To “work”, the physical something has to stand up to the forces it will experience in its intended use. These approximations are typically simplifications of the full underlying science (all the theoretical physics and mathematics), and often/typically require some simplifying assumptions. If you google “euler buckling” or “Euler buckling equation”, you’ll find this equation in various forms, and a LOT of seriously advanced, complicated math, much of it well beyond anything most high school students are exposed to (and beyond what I can understand and use).

F = pi squared x E x I divides by (K x L) squared

You need to understand/remember in using a formula like this to “do engineering” – you don’t just plug numbers into this equation for the various factors, and get an answer/the answer. You use/apply the relationships the equation shows/defines. It is the relationships that matter. The formula is a short-hand summary statement in mathematical form saying (in this case) when you want/need to understand how a long, thin column, made of a homogeneous, elastic material behaves when put under an axial compression force behaves, here are the factors that determine the behavior, that you need to take into account, and here are the relationships between those determining factors- how they work and play together- how the BS of a stick/piece of wood changes as you change any of the factors that determine BS. Remember, wood is not a homogeneous material.

The formula was first published in 1757 by the Swiss mathematician Leonard Euler. It came from his (mathematical) study of how long, thin columns deflected (and hence failed) when a load/force was applied at the ends, along the long axis of the column
In this equation"

F = Euler's critical load (with longitudinal/”axial” compression load on column) = the buckling strength; “BS”). It is the load/force that a column, a tower leg, will start to bow/deflect. That bowing/buckling will happen in the middle of the column.

What are the factors this is telling us that determine the BS?

They are:
E = the modulus of elasticity (aka Young’s modulus) of column material. This is the inherent stiffness of a piece of wood; it doesn’t depend on, it doesn’t have a relationship to size/cross section. It does have a linear relationship to the density. As discussed in previous posts, as wood density increases, E increases. On average, if you double the density (increase it by a factor 2), E goes up by a factor of about 2.25, but there is significant “variation around the mean”- two sticks, same size and same weight can have significantly different E values, which means significantly different BSs. This is what I was talking about when I noted wood is not a homogeneous material.

I = minimum area moment of inertia (sometimes referred to as the 2nd moment of inertia) of the cross section of the column. For a square cross section leg, where the length of the sides are x, I = (x^4)/12. (that’s x to the fourth power, divided by 12

L= unsupported length of column, This can be the length of a stick you’re testing the buckling strength of; it can the length of a leg segment (i.e., chimney section leg segment, base section leg segment), or it can be the length of a ‘braced interval’ – the length between braced points along the leg, the length of the short ‘stacked’ columns you create when a leg is braced.

K = column effective length factor. This comes from the “end conditions” of the column, or section of column you’re evaluating. When you do ‘single finger push-down’ (SFPD) testing of a stick to measure its BS, the end conditions approach what is called ‘pinned-pinned’ end conditions. If you brace this stick using a ladders and Xs bracing approach, both ends of the shorter braced segment approach what is called ‘fixed-fixed’ end conditions. The effective length factor for this situation turns out to be about 2.3. So, if you measure SFPD BS of a stick at 10 grams, you use 23gr (10gr x 2.3) as the value for doing inverse square calculations to see what bracing interval you need to use to have the leg carry your design load.

The effective length factor for all Xs is significantly less; about 0.55. Note, as I’ve explained before, that this factor was derived from - was back-calculated from - detailed wood specifications I was provided from a couple of State winning towers. While I understand the theoretical basis for getting to the 2.3 effective length factor to convert pinned-pinned end conditions to fixed-fixed, I don’t yet have that understanding for converting pinned-pinned to… whatever the end conditions are when braced with all Xs. What matters for us is that both effective length factors “work”; when you design using them, the tower, if carefully constructed, holds the weight you’ve calculated. In the all Xs case, when I say it works, I’m saying that using 1/16” x 1/32” Xs works and the effective length factor 0f 0.55 works. I don’t know how different the factor might be if using different size/cross section X strips.

So, to look at a question like you pose, you need to, how do I say this… isolate on the relationships between variables. In doing the inverse square calculations, we isolate on the length factor, and apply the inverse square relationship between length and buckling strength. In looking at the effect of cross section on buckling strength (for square legs), first, we need specific information on size. We then can look at the relationship of I to the cross sectional width. So, let’s look at 4 cross sections, 1/16”, 3/32”, 1/8”, and 5/32”.
1/16” = 0.0625”. That, to the 4th power/12 = 0.0000012717
3/32” = 0.09375”. That, to the 4th power/12 = 0.000006437
1/8” = 0.125”. That, to the 4th power/12 = 0.00002035
5/32” = 0.15625”. That, to the 4th power/12 = 0.000103

So, if looking at two sticks, we assume they have the same E (and simplifying things, assume that same E means same density) and we assume they have the same length, the relationship between the BSs of the two sticks will be the relationship between I values:
The BS of the 3/32” stick will be 5.06 times that of the 1/16” stick. The BS of the 1/8” stick will be 3.1605 x that of the 3/32 stick, and 16 x that of the 1/16” stick. The BS of the 5/32 will be 2.44 x that of the 1/8 stick (and 7.716 x that of the 3/32 stick, and 39.06 x that of the 1/16” stick).

Then, we need to look at the relationship between the weights of the sticks at these sizes, assuming they are all of the same density; have the same “E”. The weight of the 3/32” stick will be 9/4 (=2.25x) that of the 1/16” stick (it will take 4 1/32” sticks to make a 1/16” stick; it will take 9 1/32” sticks to make a 3/32” stick); 9/4 = 2.25. The 1/8” stick will be 1.78 x that of the 3/32 stick (16/9); the weight of the 5/32 will be 1.56 x that of the 1/8 stick (25/16) (and 2.78 x that of the 3/32 stick).

In all cases, looking at the relative increase in both weight and BS, as you increase stick size, the BS goes up significantly faster than the stick weight goes up.

Here’s a little table looking at these relationships
size Relative WGT Relative I
1/16” 1 1
3/32” 2.25 5.06
1/8” 4 16.00
5/32” 6.25 39.06

So, finally, to your specific example, let’s put some numbers to it:

Starting with a 1/16” stick. Based on the density number you gave (0.3), I assume you are talking about a 1/16” x 36” stick weighing 0.3 grams. So, a 3/32” x 36” stick of the same density (and we’re assuming same E) would have a weight of 2.25 x 0.3, which would = 0.675gr. That means your 3/32” stick at a weight of 0.6gr would have a density about 11% lower than that of the 1/16” stick at 0.3gr. At the same density, the 3/32” stick would have a BS 5.06 x that of the 1/16” stick. If you test the BS of a few 1/16” sticks weighing close to 0.3gr, you’ll see readings around 1.8gr. If you test a few 3/32” sticks weighing around 0.68gr, you’ll see BS measurements around 9.1gr (5.06 x 1.8). Testing 3/32” sticks weighing 0.6gr, you’ll see a BS a bit lower…8-ish grams.

To keep things a bit less complicated, let’s look at sticks of the same density, at 1/16” and 3/32”, and let’s throw 1/8” sticks into the analysis. And let’s look, for this analysis, at the base segment for a B tower (which would be a leg segment length of 27.05cm.

The 1/16” 36” sticks weigh 0.3gr, and have a BS of 1.8 gr. The 3/32” sticks weigh 0.68gr and have a BS of 9.1 gr, and the 1/8” sticks weigh1.2gr, and have a BS of about 28.8gr.

So, which is “better”/”more efficient”?? You can’t really say anything just from just this information, because it depends on the bracing interval you have to use to get to the braced leg BS up to design strength. What we need to figure out for these three leg size options is which one gives us lower leg weight+bracing weight+glue weight.

First, let’s figure out the bracing interval needed to make each of these stick sizes/weights work. To do this, I’ve used the inverse square table I posted a link to, a couple pages back, and have changed stick 36” BS to look at the BSs of our 1/16” and 3/32” sticks that we just came up with.

For our “design strength” for this analysis, we’ll use 4499gr, which is applying a 10% safety factor to the 4090gr force a base segment leg in B tower meeting the 29cm circle bonus will see at a 15kg tower load.

If you look at the inverse square table, you’ll see that for 1/8”, with a 36” SFPD BS at 28.8gr, using a 1/5 bracing interval (using all Xs, with the Xs at 1/32 x 1/16) we get a braced leg strength very close to our 4499gr design strength (BS at 28.9 gets us 4524 (cell AG38).
Looking at the 1/16” stick, to get over 4499gr braced leg strength, we need to go to a bracing interval of 1/20, and for the 3/32” stick, we need to go to a bracing interval of 1/9.

So, moving one more step toward an answer, what does that mean in terms of tower segment weight?
With our 1/16” leg wood, we are looking at a total leg weight of 0.35gr
With our 3/32” leg wood, we are looking at a total leg weight of 0.71gr
With our 1/8” leg wood, we are looking at a total leg weight of 1.42gr

Having worked out the total length of bracing pieces for 1/5 interval (579cm), roughly calculated, the total length of bracing pieces for a 1/9 bracing interval is about 1037cm. For the case of a 1/20 bracing interval, we’re looking at almost 4 times that for a 1/5 interval, so about 2300cm.

So, now we can estimate bracing weight. Using 7.5gr 3” x 36” x 1/32” sheet:
For the 1/16” legs, we’ll need 3.92gr of Xs
For the 3/32” legs, we’ll need 1.77gr of Xs
For the 1/8” legs, we’ll need 0.99gr of Xs

Then for the glue. Using 0.01gr/joint:
For the 1/16” legs, 160 X strips=320 joints = 3.2gr of glue; so bracing wood + glue = 7.12gr
For the 3/32” legs, 72 X strips=144 joints = 1.44gr of glue; so bracing wood + glue = 3.21gr
For the 1/8” legs, 40 X strips=80 joints = 0.8gr of glue; so bracing wood + glue = 1.79gr

And finally, adding it all together, 8-)
For the 1/16 legs 7.12gr bracing+0.35gr in legs = 7.47gr segment weight
For the 3/32 legs 3.21gr bracing+0.71gr in legs = 3.92gr segment weight
For the 1/8 legs 1.42gr in bracing+1.79gr in legs = 3.21gr segment weight.
Finally, a pretty clear answer to which is better.
Len Joeris
Fort Collins, CO

dholdgreve
Member
Member
Posts: 470
Joined: February 6th, 2006, 2:20 pm
Division: B
State: -
Contact:

Re: Wood

Postby dholdgreve » November 21st, 2017, 6:30 am

Pretty difficult to debate logic like that!... but keep in mind that as the material used gets larger and less dense, there tends to be less lignen (sap) within the pieces, which holds them together. As such, they can become more susceptible to what I call "Blow Out." Blow out occurs when a brace is glued to a column, and under substantial load, the entire area around the glue joint just pulls right out of the column. The column does not suffer a buckling failure, the braces don't compress or stretch beyond their limits, the actual glue joint does not fail, it just separates the the glued section of the column from the rest of the column. A few ways to compensate for this might be to thin down the braces, allowing you to make them wider, which in turn increases the glue area and spreads the forces over a wider area, or you can add gussets over the top of the lap jointed brace using 1/64 or 1/32 material.

Bottom line is that thinner, more dense material is not as prone to blow out as the lighter materials... Len, is there are way to calculate this?
Dan Holdgreve
Northmont Science Olympiad

Dedicated to the Memory of Len Joeris
"For the betterment of Science"

Balsa Man
Coach
Coach
Posts: 1318
Joined: November 13th, 2008, 3:01 am
Division: C
State: CO
Location: Fort Collins, CO
Contact:

Re: Wood

Postby Balsa Man » November 21st, 2017, 10:39 am

dholdgreve wrote:Pretty difficult to debate logic like that!... but keep in mind that as the material used gets larger and less dense, there tends to be less lignen (sap) within the pieces, which holds them together. As such, they can become more susceptible to what I call "Blow Out." Blow out occurs when a brace is glued to a column, and under substantial load, the entire area around the glue joint just pulls right out of the column. The column does not suffer a buckling failure, the braces don't compress or stretch beyond their limits, the actual glue joint does not fail, it just separates the the glued section of the column from the rest of the column. A few ways to compensate for this might be to thin down the braces, allowing you to make them wider, which in turn increases the glue area and spreads the forces over a wider area, or you can add gussets over the top of the lap jointed brace using 1/64 or 1/32 material.

Bottom line is that thinner, more dense material is not as prone to blow out as the lighter materials... Len, is there are way to calculate this?


Dan, you have hit the nail on the head in terms of there being a limit on how far you can go in the direction of larger cross section at lower density (so that you maintain your ‘design’ buckling strength). There are three limiting elements:

First aspect of the limit is that balsa only exists down to some limit. Looking at 1/8” x 36”, 0.7gr sticks are pushing that limit. Over the years I’ve seen a few – a very few- down into the high 5s (0.57 being the lightest 1/8 x 36 I have ever seen. The fact that 1/8 sticks at 0.7 and below are rare is another limiting aspect – they are expensive- $6.95 a stick (and the ones below 0.6 are more- think I paid over $10).
And. as you note, the other limit as you get down into the really light end of density range that balsa exists in, and it is a significant limit, is shear strength. The ends of braces attached to really low density legs tear away more easily than they do from higher density legs.

There is no way I know of to calculate anything about this, because there is no way to…. non-destructively test. There is, as far as I know, not any study or data set of shear strength vs density for balsa out there. You could conceivably set up a test rig- get a bunch of, let’s say 1/8” pieces, inch, inch and a half long. You’d weigh them, and you’d want a range of densities to test at. Set up board with a couple of ‘holding strips’ glued down on it with like a ¼” gap between the ends of them. Have a bunch of bracing strips. Glue one end of strips across the middle of your 1/8” test pieces- position the test pieces so the bracing strip goes through the gap, the holding strips hold the test piece in-place, then pull the end of the bracing strips with a scale to see what force they shear away at. You’d have to test a lot of pieces to get a decent statistical handle on results. We’re talking a lot of work.

I can say this from (limited) experience (running 5/32” legs with 1/16 x 1/32 Xs at Nationals last year), we had no ‘blow out’/tear away failures at full tower load with 5/32 at about 1gr/36” (which would be about 0.65/0.66 gr/36” 1/8 wood). And I can also say looking at a lot of data on balsa gathered over the years, I am quite certain that not all 0.65/.66, or even 0.7gr/36 1/8 sticks would hold. A lot wouldn’t, and there’s no way to know in advance. This is rolling the balsa dice territory.

The methods you note pretty much cover the ground in terms of things you could do to strengthen the joint; they’re all about increasing the glue area (hence decreasing the force per unit area; e.g. lbs per square inch) on the joint.
These limits are why, while I’ve noted a few times that while 5/32” has a theoretical advantage over 1/8” leg wood for towers, in practical application that advantage turns out to be less than it looks like in theory.
Len Joeris
Fort Collins, CO


Return to “Towers B/C”

Who is online

Users browsing this forum: No registered users and 1 guest