YUSO 2017 Astronomy

Answer Key

Part I: Multiple Choice (1 pt each)

1. b 14. d 27. e 40. a
2. b 15. a 28. a 41. a
3. a 16. b 29. c 42. b
4. b 17. a 30. c 43. a
5. a 18. d 31. a 44. b
6. e 19. a 32. e 45. b
7. d 20. d 33. c 46. a
8. e 21. e 34. b 47. e
9. c 22. b 35. b 48. c
10. b 23. d 36. a 49. d
11. a 24. b 37. e 50. a
12. b 25. c 38. b 51. e
13. b 26. d 39. a

Part II: DSO Identification (2 pts per subsection)

1. Henize 3-1357 or Stingray Nebula
 a. Hubble Space Telescope
 b. Ara
 c. Oxygen
 d. Nitrogen
 e. Hydrogen

2. Sirius or Sirius A & B
 a. Canis Major
 b. Sirius A
 c. -2.9
 d. A
 e. 20 A.U

3. HM Cancri
 a. 5.4 minutes or 321.5 sec
 b. Cancer
 c. 08h 06m 23.20s; +15° 27' 30.20"

4. M15 or NGC 7078
 a. Pegasus
 b. Charles Messier
 c. 13.2 billion years old
 d. 112
 e. 9
5. SNR G1.9+0.3
 a. Sagittarius
 b. About 27,700 – 28,000 ly
 c. There was a dusty region of our galaxy that blocked visible light from reaching earth
 d. When was it discovered?
 e. G1.9+0.3 exhibits an extremely asymmetric pattern.
 f. Synchrotron radiation

6. #3
7. Stingray nebula
8. NGC 7078 or M15
9. NGC 2440; nearly 400,000 degrees Fahrenheit or 200,000 degrees Celsius
10. M7 IIIe
11. Tycho’s SNR or G120.1+01.4 or SN 1572
12. SN 2011fe or Messier 101
13. SNR 0509-67.5
14. Ripples in space-time will be given off.
15. SS Cygni
16. NGC 2392
17. Henize 3-1357
18. Alpha Centauri system
19. Sirius B; 1930; Subrahmanyan Chandrasekhar

Part III: Short answer (2 pts each)
1. OBAFGKM
2. A & B
3. M
4. Temperature of the star’s outer atmosphere; chemical composition of the star’s outer layers
5. The orbits of planets are ellipses
6. A line from a planet to the Sun sweeps over equal areas in equal intervals of time.
7. A planet’s orbital period squared is proportional to its average distance from the Sun cubed.
8. Main-sequence star
9. Solar masses
10. Lower right to upper left
11. A
12. the width of their spectral lines.
13. quasars
14. using radio waves to get a pulse reflection, parallax, cepheids, brightness, red shifts

Part IV: Math (3 pts per subsection)
Award full points if answer is within 0.1 of the correct answer.
1)
 a. 14.7 years
 \[P^2 = a^3 \]
 \[\sqrt{a^3} = 14.7 \text{ years} \]
 b. It takes the same amount of time.
 c. Elliptical
2)
 a. 55.4 AU \[X_{cm} = \frac{(1.00\,V(0) + (12.0)\,(60.0))}{(1.00 + 12.0)} = 55.4 \text{ AU} \]

 b. 4.62 AU \[X_{cm} = \frac{(1.00\,V(0) + (12.0)\,(60.0))}{(1.00 + 12.0)} = 4.62 \text{ AU} \]

 c. 9.92 \times 10^7 \text{ years} \[T = 2\pi \sqrt{\frac{(60)^3}{(6.7 \times 10^{11})}} \times (13) = 9.92 \times 10^7 \text{ years} \]

 d. 1.4 solar masses

 e. 81 times more

 f. It’s 1.27 times greater

 g. Star C&D because the combined mass is greater than A&B.

3)
 a. 7.24 \times 10^8 \text{ pc} \[d_{pc} = 10^4 \left(\frac{204.153 \pm 5}{5}\right) = 7.24 \times 10^8 \text{ pc} \]

 b. 2.36 \times 10^3 \text{ ly} \[\frac{7.24 \times 10^8 \text{ pc}}{1 \text{ ly}} \times \frac{3.08 \times 10^{16} \text{ m}}{9.46 \times 10^{15} \text{ m}} = 2.36 \times 10^3 \text{ ly} \]

Part V: Tiebreaker Questions

Instructions: Break ties in order of tiebreaker questions.

Ex. If Team 1 has answered 2 and 4 correctly, and Team 2 has answered 1 and 3 correctly, Team 2 wins by tie-breaker

1. A distant ninth planet of our solar system.
2. About 2.03 \times 10^9 pennies (± 0.1 x 10^9)
3. About 2.03 \times 10^7 dollars (± 0.1 x 10^7)
4. Stars are considered black bodies. The color of a blackbody lies on the Planckian locus. The Planckian locus does not pass through green, indigo or violet wavelengths. Stars emit a range of light but the wavelengths of light peak in one color. So a star’s blackbody curve can peak at green or purple wavelengths but it’s also emitting yellow, blue, red, and/or orange wavelengths. The mixture of wavelengths appears white to human eyes.