Remarks:
- You must have appropriate clothing, including goggles, lab aprons/lab coats, and closed-toed shoes. If you don’t have these, you will not be allowed to participate in the lab portion of this test.
- Five 8.5” □ 11” cheatsheets and two calculators allowed.
- You will have 50 minutes to complete this test and the lab.
- Use appropriate units. Note: SI units are always acceptable.
- If you take apart the test, write your team number on every page in the space provided.
- Sometimes, the answers won’t make sense. This is okay.
- Good luck!

Lab Portion

Before you, you have a mixture of NaCl and CaCl\(_2\), as well as some other materials. Use boiling point elevation to determine the percentages of each by mass.

Fill in each of the below areas as you progress.

Procedure:

5 pts - clear, easy to follow
3 pts for each of the following steps, unless stated otherwise
- massing the sample mass (1pt)
- mixing in the sample to the water
- boiling the water w/ sample
- recording final temperatures
- boiling water w/o sample for a reference point (4 pt)

TOTAL: 19
Data:

5 pts - data matches procedure
3 pts - data has a reasonable number of sigfigs
4 pts - data is well organized
3 pts - all data has units

total: 15

Calculations: (Please circle or otherwise distinguish your final answer)

4 pts - usage of $\Delta T_p = K_p \Delta m$
3 pts - setup of system of equations
3 pts - correct values of i (2 for NaCl, 3 for CaCl$_2$)
3 pts - calculations easy to follow
2 pts - calculations are accurate given data

total: 15
Written Portion

1. The process A + B → 3C has a ΔH of +142.7 J.
 a. Is the process endothermic or exothermic?
 endothermic
 Total points: 1
 b. Say A has a molar mass of 43.1 g/mol. If you react 55.0 g of A with excess B, how much heat would be transferred? Assume that the forward reaction occurs until completion.
 \[
 55.0 \text{ g } A \times \frac{\text{mol } A}{43.1 \text{ g } A} \times \frac{142.7 \text{ J}}{1 \text{ mol } A} = 182 \text{ J}
 \]
 total points: 3

2. On Earth, a particular battery-powered balloon-blowing machine can blow up 120 balloons with 25.0 cm diameter before it runs out of power.
 a. How much work is done by the machine? Assume the balloons start out completely deflated.
 \[
 W = -P(V_f - V_i) \times n = -1 \text{ atm} \times \left(\frac{4}{3} \pi (0.125 \text{ m})^3 - 0 \right) \times 120 = -0.982 \text{ atm} \cdot \text{m}^3
 \]
 \[
 = -99.5 \text{ kJ}
 \]
 Note: n = number of balloons. since all the balloons are the same we can just multiply by n
 Total Points: 3 (r = 0.25 → -1, no negative sign → -0.5)
 b. On Mars, the atmospheric pressure is approximately 600 Pa. How many balloons of similar size can be blown up on Mars if the machine does as much work as it does on Earth?
 \[
 -0.982 \text{ atm} \cdot \text{m}^3 = -P(V_f - V_i)n = -600 \text{ Pa} \times \frac{1 \text{ atm}}{101325 \text{ Pa}} \times \left(\frac{4}{3} \pi (0.125 \text{ m})^3 - 0 \right) \times n
 \]
 \[
 \Rightarrow n = 20270
 \]
 total points: 4 (didn’t convert btw pressure units → -2)

3. Nick buys 20 Big Macs. However, instead of eating them, he manages to extract all of the energy in the Big Macs to melt some ice. How many kg of ice could Nick melt with the Big Mac energy? (One Big Mac contains 540 Calories)
 \[
 20 \text{ Big Macs} \times \frac{540 \text{ Cal}}{\text{ Big Mac}} \times \frac{1000 \text{ cal}}{\text{ Cal}} \times \frac{4.184 \text{ J}}{\text{ cal}} = 4.52 \times 10^7 \text{ J}
 \]
 \[
 4.52 \times 10^7 \text{ J} \times \frac{18.01 \text{ g}}{6.01 \text{ mol}} \times \frac{\text{ kg}}{1000 \text{ g}} = 135 \text{ kg}
 \]
 Total points: 4 (didn’t convert from Cal to cal → -1)

4. The density of aluminum is 2.70 g/cm³.
a. Let’s say you have a solid ball of aluminum with a diameter of 50.0 cm. Would this ball float or sink in water?

- density of aluminum > density of water → sink

Total points: 1

b. You have another solid ball with diameter 50.0 cm that floats in water. You know that this ball is composed of two materials, one of which is aluminum. You also know that aluminum makes up 37.2% of the mass of the ball. What is the maximum density of the other material?

\[
V_{\text{ball}} = \frac{4}{3}\pi(25 \text{ cm})^3 = 6.54 \times 10^4 \text{ cm}^3
\]

\[
\rho_{\text{ball}} = \frac{m_{\text{ball}}}{V_{\text{ball}}} < \rho_{\text{water}} = 1 \frac{g}{\text{cm}^3} \Rightarrow m_{\text{ball}} < 6.54 \times 10^4 \text{ g}
\]

\[
m_{\text{Al}} = 37.2\% \times m_{\text{ball}} = 2.43 \times 10^4 \text{ g} \Rightarrow V_{\text{Al}} = 2.43 \times 10^4 \text{ g} \times \frac{\text{cm}^3}{2.70 \text{ g}} = 9.00 \times 10^3 \text{ cm}^3
\]

\[
m_{\text{other}} = m_{\text{ball}} - m_{\text{Al}} = 4.11 \times 10^4 \text{ g}, \quad V_{\text{other}} = V_{\text{ball}} - V_{\text{Al}} = 5.64 \times 10^4 \text{ cm}^3
\]

\[
\rho_{\text{other}} = \frac{m_{\text{other}}}{V_{\text{other}}} = 0.729 \frac{g}{\text{cm}^3}
\]

Total points: 5 (37.2% volume → -2, r=50 cm → -1)

full credit off for a density > 1, for not thinking

c. Consider a spherical shell of pure aluminum with uniform thickness that stays suspended in water. The interior of this shell is a vacuum. If the exterior diameter of this shell is 50.0 cm, what is the thickness of the shell?

\[
V_{\text{shell}} = 6.54 \times 10^4 \text{ cm}^3. \quad r = \text{radius of vacuum, thickness} = (25 - r) \text{ cm}
\]

\[
\rho_{\text{shell}} = \rho_{\text{water}} = 1 \frac{g}{\text{cm}^3} \Rightarrow m_{\text{shell}} = 6.54 \times 10^4 \text{ g} = m_{\text{Al}}
\]

\[
V_{\text{Al}} = \frac{4}{3}\pi(25 \text{ cm})^3 - \frac{4}{3}\pi r^3 = \frac{m_{\text{Al}}}{\rho_{\text{Al}}} = 6.54 \times 10^4 \text{ cm}^3 \times \frac{\text{cm}^3}{2.70 \text{ g}} \Rightarrow r = 21.4 \text{ cm}
\]

Thus thickness = 25 − 21.4 = 3.6 cm

Total points: 7 (r=50 cm → -1, found inner radius but not thickness → -1)

5. A resistor with a uniform cross-section has a resistance of 100 Ω.

a. Which of the following could be done to the resistor to lower the resistance to 50 Ω? Circle all that apply. (0.5 pt per option → 2 pt total)

- double the length
- halve the length
- double the cross-sectional area
- quadruple the cross-sectional area

b. Explain the difference between resistance and resistivity.

Resistance is an extensive property as it depends on the size of the resistor/wire, while resistivity is an intensive property is the same for that material regardless of dimensions.

Total points: 3 (1 pt for each for describing difference, 0.5 pt each for using proper vocab)
6. Omar is thirsty. Instead of going to the water fountain like a normal person, he creates some water by reacting a certain amount of hydrogen gas with excess oxygen. This gives Kevin the perfect opportunity to carry out his assassination plan against Omar. While Omar isn’t looking, Kevin reacts 23.1% of Omar’s water with oxygen to create 48100 mg of hydrogen peroxide (H₂O₂).

 a. Find the initial amount of hydrogen gas, in moles.
 Reactions: 2H₂ + O₂ → 2H₂O, 2H₂O + O₂ → 2H₂O₂
 48100mg H₂O₂*(g/1000mg)*(mol/34.01 g)*(2mol H₂O/2mol H₂O₂) = 1.41 mol H₂O
 initial amt H₂O = 1.41 mol / 23.1% = 6.104 mol, 6.104 mol H₂O * (2 mol H₂ / 2 mol H₂O) = 6.104 mol H₂
 Total points: 3 (-1 for not considering efficiency, -0.5 for finding mass)

 b. If Omar’s process released 110.3 kJ of energy, what is the standard heat of formation of water? (Note: this may not be consistent with the actual ∆H°r)
 Note: because H₂(g) and O₂(g) are the standard states of those elements, their ∆H°r’s are 0.
 So, ∆H°r H₂O = Δenergy / amount = -110.3 kJ/6.104 mol = -18.07 kJ/mol
 (Note: this is obviously not the actual value)
 Total points: 5 (-2 for not dividing, -1 for sign)
 if they answered 1.41 for part a, their answer should be -78.2 kJ/mol

 c. ∆H°r for H₂O₂ is -187.8 kJ/mol. How much heat was transferred during Kevin’s process? Use the true value of ∆H°r for water, -285.8 kJ/mol.
 We started with 1.41 mol H₂O and ended with 1.41 mol H₂O₂.
 1.41 mol H₂O₂ * (-187.8 kJ/mol) - 1.41 mol H₂O * (-285.8 kJ/mol) = 138.18 kJ
 Total points: 4

7. 90.2 g of chlorine gas are cooled from room temperature to -90.0°C. The energy released by the chlorine is collected and used to heat 10.0 mL of water, also starting at room temperature. If the energy is transferred with 78.2% efficiency, at what phase and temperature is the water now?

 initial T = 25 C + 273 = 298 K. Final T = -90C + 273 = 183 K
 E Cl = 0.48 J/(g K) * 90.2 g * (298K - 239 K) + 20.41 kJ/mol * 90.2g * mol/70.906g * 1000J/kJ + 0.948 J/(g K) * 90.2 g * (239 K-193 K) = 3.331 * 10⁴ J
 E transferred = 3.331 * 10⁴ J * 0.782 = 2.605 * 10⁴ J
 Guess: water is still liquid. 10.0 mL * 1g/mL = 10.0 g
 2.605 * 10⁴ J = 10.0 g * 4.184 J/g C * (T - 25) C ⇒ T = 647 °C… nope
 2.605*10⁴ J = 10.0 g * 4.184 J/g C * (100 - 25) C + 40.65 kJ/mol * 10.0g * mol/18.015 g * 1000 J/kJ + 2.08 J/(g K) * 10.0 g * (T-100)C ⇒ T = 116.5 C (NOTE: range from 110 - 125 is ok, rounding is weird)

 (6 pts)
 -2 if forgot to take into account the efficiency (should be 465 C)
 -1 if forgot the phase
8. Explain why testing for the presence of manganese frequently involves the formation of potassium permanganate, as opposed to other variations of manganese such as manganese dioxide.

Potassium permanganate is a bright pink color, which makes it easy to see compared to other forms of manganese that are colorless. (3 pt)

9. As of now, the elements in group 18 (the rightmost row of the periodic table) are helium, neon, argon, krypton, xenon, radon, and oganesson. Below is a table of some of their properties.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Radius</th>
<th>Ionization Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium</td>
<td>2</td>
<td>28 pm</td>
<td>2372.3 kJ/mol</td>
</tr>
<tr>
<td>Neon</td>
<td>10</td>
<td>58 pm</td>
<td>2080.7 kJ/mol</td>
</tr>
<tr>
<td>Argon</td>
<td>18</td>
<td>106 pm</td>
<td>1520.6 kJ/mol</td>
</tr>
<tr>
<td>Krypton</td>
<td>36</td>
<td>116 pm</td>
<td>1350.8 kJ/mol</td>
</tr>
<tr>
<td>Xenon</td>
<td>54</td>
<td>140 pm</td>
<td>1170.4 kJ/mol</td>
</tr>
<tr>
<td>Radon</td>
<td>86</td>
<td>150 pm</td>
<td>1037.0 kJ/mol</td>
</tr>
<tr>
<td>Oganesson</td>
<td>118</td>
<td>157 pm</td>
<td>839.4 kJ/mol</td>
</tr>
</tbody>
</table>

Say the next element in that group was discovered. Below are several physical properties of said element. For 8a, give an exact numeric value; for 8b and 8c, give an approximate numeric value and then explain why the trend you identified occurs:

a. Atomic number

 atomic number = 168 (1 pt)

 Note: This is due to how orbitals work

b. Atomic radius

 160-170 pm (1 pt)

 (-0.5 for no unit)

 Explanation:

 orbitals, or

 More electrons, so you need more space (general gist of it) (2 pt)

c. Ionization Energy

 500-760 kJ/mol (1 pt) (-0.5 for no unit)

 Explanation:

 shielding electrons, or ionization energy works on the electrons that are the farthest away. Increase in atomic radius means that the force needed to remove the furthest electron is lowered (2 pt)
10. Adam has a cup with 100 mL of water at room temperature.
 a. Adam likes his water cold, so he takes three ice cubes and puts them in the cup, then waits for the temperature to stabilize. If Adam wants his water at 10.0°C, what is the mass of each of the ice cubes? Assume that the ice cubes are identical and start at 0°C and that energy is only transferred between the ice and the water.

\[
4.184 \text{ J/g C} \times 100 \text{ mL} \times 1 \text{ g/mL} \times (25-10)\text{C} = 6276 \text{ J}
\]

Let each ice cube be mass \(m\) g.

\[
6.01 \text{ kJ/mol} \times 1000 \text{ J/kJ} \times 3m \text{ g/mol/18.02 g} + 4.184 \text{ J/g C} \times 3m \text{ g} \times 10 \text{ C} = 6276 \text{ J}
\]

\[\Rightarrow m = 5.57 \text{ g}\]

(4 pt. -1 if answer = 16.72 g; found total mass. -2 if found incorrect energy transfer but everything else accurate)

a. When Adam measures the temperature of his water, he finds that the temperature of the water is actually 9.43°C. What is the calorimetry constant of the cup? Assume that there is no energy transfer with the surrounding air.

\[
6.01 \text{ kJ/mol} \times 1000 \text{ J/kJ} \times 3 * 5.57g \times \text{mol/18.02 g} + 4.184 \text{ J/g C} \times 3 * 5.57g \times 9.43 \text{ C} + c_{\text{cal}} * (25-9.43) \text{ C} = 4.184 \text{ J/g C} \times 100 \text{ mL} \times 1g/mL \times (25-9.81) \text{ C}
\]

then, \(c_{\text{cal}} = 18.02 \text{ J/C}\)

(5 pt)

b. Disgusted, Adam gives his cup of water to Andrea. Andrea decides to boil the water to make some ramen, so she takes a heated piece of lithium and puts it into the cup. If Andrea has 21.2 g of lithium, what temperature does it need to be to boil the water?

Note: total mass of water = 100 mL * 1 g/mL + 3 * 5.57 g (from the ice) = 116.7 g

Note: we want to get the water to boiling temp, but we don’t want it to boil away completely because that’s how ramen works

\[
116.7 \text{ g} \times 4.184 \text{ J/g C} \times (100-9.43) \text{ C} + 18.02 \text{ J/C} \times (100-9.43) \text{ C} = 4.586 \times 10^4 \text{ J}
\]

\[
21.2 \text{ g} \times 3.58 \text{ J/g C} \times (T-100) \text{ C} = 4.586 \times 10^4 \text{ J} \Rightarrow T = 704 \text{ C}
\]

(7 pt: -2 if include water boiling energy, -2 if forgot calorimeter, -1 if forgot ice contribution)

c. Andrea heats the lithium to the correct temperature, but is shocked to find that 1.17 g of the lithium has evaporated away. Fortunately, she has seven 3.00 g samples of metal that she keeps at a constant 310°C, which she decides to add to the water alongside the remaining heated lithium. What does the specific heat of the metal need to be for Andrea to be successful in making ramen?

\[
\text{J contributed by lithium} = (21.2-1.17) \text{ g} \times 3.58 \text{ J/g C} \times (704-100) \text{ C} = 4.216 \times 10^4 \text{ J}
\]

\[
\text{Remaining J needed} = 2530 \text{ J}
\]

\[
7 \times 3 \text{ g} \times c \times (310-100) \text{ C} = 2530 \text{ J} \Rightarrow c = 0.574 \text{ J/g C}
\]

(5 pt, -1 if only accounted for one sample)