SSSS Circuit Lab Test

Multiple choice: 1 point each

1. d
2. c
3. b
4. a
5. d
6. c
7. d
8. c
9. a
10. d
11. b
12. a
13. d
14. a

Short answer:

1. This is a voltaic cell, the earliest battery, invented by Alessandro Volta. Label the components and their composition
 a. Blue: Electrolyte; saltwater brine or sulfuric acid (either is acceptable)
 b. Orange: Cathode, copper
 c. Gray: Zinc, anode

2. Use the diagram below. All the charges are equidistant from each other, with a distance of d:
 a. Magnitude: 9.37 N, Direction: 16.1° or .281 radians (either is acceptable)
 b. -3 V
 c. Magnitude: 32.55 V/m (or N/C), Direction: 32.76° or .572 radians (either is acceptable)

3. 4 points, 1 per question: Given a cylindrical graphite (ρ=3*10⁻³ Ω*m) wire with radius r and height l, answer the following. Assume the wire is ohmic:
 a. 0.038 Ω
 b. 2.62 A
c. 26.18 C
d. 2.62 J

4. 6 points, 1 per question: Give the threshold for current in order for one to experience these:
 a. 1 mA
 b. 5 mA
 c. 6-16 mA
 d. 17-99 mA
 e. 100 mA and above

5. A hydroelectric power plant transmits electricity at 100 kV. When it reaches my house, the voltage is now 99 kV, before getting transformed to 120 V.
 a. 16500 coils
 b. 169.71 V
 c. 480 W

6. Write a simplified Boolean expression for O in terms of A, B, and C
 \(!B + !A*!C\)

7. Two electrons are 5 nm apart. What is the magnitude of force experienced by them?
 \(9.24 \times 10^{-24}\) N

8. What is the internal resistance of the battery if the current at node A is 7 mA?:
 \(100.3 \, \Omega\)

9. The magnitude of an electric field at a distance x (in meters) from a point P is given by the equation: \(E = 3x-1\)
 a. \(4.25 \times 10^{-9}\) N
 b. Potential = \((-3/2)x^2 + x\)

10. Consider a large charged conductive plate
 a. 0
 b. 1129 N/C or V/m

11. What is the voltage drop, current, and power dissipated for each resistor?

<table>
<thead>
<tr>
<th>Resistor</th>
<th>V</th>
<th>I</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>3</td>
<td>.015</td>
<td>.045</td>
</tr>
</tbody>
</table>
12. A parallel-plate capacitor (5 nF) with a dielectric made of air has a separation of .5 mm.
 a. .28 m²
 b. 20000 N/C or V/m
 c. 2.5 E-7 J

13. Charge Q (5 nC) is moving at 5 µm/s when it encounters a magnetic field of 0.02 T, as shown below.
 a. Magnitude: 5 E-16 Direction: down
 b. .025 m

14. What value of R1 should be used for the following circuit if D1 has a forward voltage of 2.5V and D2 has a forward voltage of 3V, and both LEDs use a current of 20 mA?

 225 Ω (also acceptable: resistance ≥ 225Ω)

15. Given the following circuit, answer the following:
 a. 8 E-5 C
 b. .03 s
 c. 1.11 E-15

16. What are the values of I₁, I₂, and I₃ in the circuit below?

 I₁ = .0175 A, I₂ = .0085 A, I₃ = -.009 A

17. Fill in the table with the correct base SI units

<table>
<thead>
<tr>
<th>Resistance (Ω)</th>
<th>kgm²s⁻³A⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (V)</td>
<td>kgm²s⁻³A⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Coulombs (C)</td>
<td>sA</td>
</tr>
<tr>
<td>Teslas (T)</td>
<td>kgs⁻²A⁻¹</td>
</tr>
<tr>
<td>Watts (W)</td>
<td>kgm²s⁻³</td>
</tr>
<tr>
<td>Farad (F)</td>
<td>s⁴A²m⁻²kg⁻¹</td>
</tr>
</tbody>
</table>

18. 2 wires are placed parallel to each other.
 a. Same direction: attract; different directions: repel
 b. 2 E⁻⁵ N/m
19. Draw a schematic of a circuit that can be used to change the direction of current through a load (such as controlling the direction of a motor)

![Schematic of a circuit](image)

20. A solenoid with an iron core (μ=.25 H/m) with 25 turns, a length of 3 cm, and has a current of 1.5 A flowing through it. What is the magnetic field inside the solenoid?

312.5 Tesla

21. Use this circuit to answer the following questions:
 a. 400 Ω
 b. 937.5 Ω
 c. Wheatstone bridge, used to measure unknown resistances (or capacitances, inductance, impedance, etc), soil analysis, etc.
22. How much power does R6 dissipate in the following circuit?

0.17 W

23. Given the following diagram of a motor:
24. Draw a schematic for the thevenin equivalent of this circuit (from point A to point B).

Lab:

1. Multimeter should take 2 measurements and a calculation should be done to get approximately 6.6 mW from the measurements.

2. Build a circuit that fully charges (5\(\tau \)) the 470 \(\mu \)F capacitor in 1.34 seconds using the following resistors of 100, 250, and 500 \(\Omega \), and the given battery. Use a stopwatch to check.
3. Construct a circuit using the provided op-amp and various resistors to have an output voltage 2 times the input voltage.

Both resistors can be any value as long as they are equal.

(Make sure supply voltage and ground are connected to respective parts of a power supply)