Anatomy/Muscular System

From Science Olympiad Student Center Wiki
Jump to: navigation, search

The muscular system is a topic of the event Anatomy. For this system, muscles from the official muscle list must be identifiable.


Basics of the Muscular System

Antagonistic Pairs

Muscles work in antagonistic pairs. This basically means that there are always at least two muscles working in opposite functions for any joint. One will, for example, extend the joint, while the other flexes it. A good example is the elbow joint. The Triceps brachii extends the joint when it contracts, and the Biceps brachii flexes the joint when it contracts.

Interactive animation to see this concept in action

Of course, there are never really only two muscles acting on a joint. In the scenario I just described, the Brachialis and Brachioradialis would be acting on the elbow in flexion with the Biceps, and the Anconæus would act with the Triceps, although it has a very minor function.

Three Types of Muscle

As the title of this section implies, there are three types of muscle: Skeletal, Cardiac, and Smooth.

Types of Muscle
Type Striated? Voluntary? Nucleation Shape Location Function Actin to Myosin Ratio
Skeletal (Also known as Striated Muscle) Yes Yes Multi-nucleated, peripheral Appears deeply grooved, with parallel fibers Found in all skeletal muscle tissues. Allows movement, aids in transport of materials through pushing of blood, warms body. 6:1
Smooth Muscle No No Single and central Appears as interwoven, clearly defined cells. Located in the esophagus, stomach, intestines, bronchi, uterus, urethra, bladder, blood vessels, and the arrector pili in the skin. Aids blood flow, digestion, childbirth, excretion, and moving arm hairs. From 2:1 to 10:1
Cardiac Muscle Yes No Single and central Branching, with intercolated disks, which are dark lines in pictures Found in the heart Pumps blood throughout the body. 16.5:1

Muscle Types.jpg

Skeletal Muscle

Despite the fact that there are three types of muscle, skeletal muscle is the kind most stressed by the event. Science Olympiad requires you to know 50 skeletal muscles for the event. A comprehensive list can be found here. The skeletal muscle is the kind most commonly thought of when one hears the word "muscle". Examples include Vastus medialis, the Rectus abdominis, buccinator, and the Biceps brachii.

Muscle structure.jpg

  • A Tendon attaches muscle to bone. The Epimysium (plural epimysia) is a layer of dense connective tissue that surrounds the entire muscle. Its function is to protect muscles from friction that occurs between other muscles and bones. In tendons, it is thicker and contains more collagen.
  • The muscle consists of many Fascicles (aka bundles) of muscle fibers. Each fasicle is wrapped in a fibrous connective tissue sheath called the Perimysium.
  • The Endomysium consists mostly of reticular fibers. It is the sheath of connective tissue surrounding each individual fiber within the fascicles.

Anatomy of a Skeletal Muscle Fiber

Muscle cell.jpg

  • The skeletal muscle fiber is a cell.
  • The Sarcolemma is the plasma membrane.
  • It has multiple inward extensions which form a set of T Tubules (the T stands for transverse).
  • The Sarcoplasm is the cytoplasm & the Sarcoplasmic Reticulum is the endoplasmic reticulum. The Sarcoplasmic reticulum is responsible for controlling the release of Calcium ions.
  • Myofibrils are the cylindrical organelles found inside a muscle fiber.
  • Myofilaments are the filaments of a myofibril.
  • Myofilaments are organized into repeating units called Sarcomeres. These are the regions between two successive Z lines.

Structure of Myofibril.gif

  • Above is a picture of the structure of sarcomere.
  • There are two types of myofilaments. Myosin filaments are thick and Actin filaments are thin. Myosin is a motor protein with a globular head that is critical in muscle movement.
  • Z lines separate myofibrils into the compartments called sarcomeres.They are darker interruptions in the I bands. These are also called Z discs.
  • I bands are where there are only thin filaments. They are light striations on the muscle.
  • H zones are where there are only thick filaments. These are light stripes on the A bands, only visible when muscles are relaxed.
  • A bands are all along the thick filaments. (some overlapping). The A bands are dark striations of the muscle.

When muscles contract, the I band and H zone decrease in length but the A band stays the same length.

The NMJ and Muscle Contraction

The neuromuscular junction is the point where a motor neuron meets the muscle fiber.(The synapse of the axon terminal if a motor neuron with the motor end plate.) One motor neuron can form many NMJ's. The surface of the muscle fiber forms small ridged folds for the end of axon to rest in. Inside these folds are depressions with acetylcholine receptors. The folds are known as synaptic clefts.

Acetylcholine is necessary for life. It is the only neurotransmitter that is used in the motor division of the somatic nervous system, part of the peripheral nervous system that controls voluntary actions.
A molecule of Acetylcholine


Muscle contraction generates tension through the action of actin and myosin cross-bridge cycling. While under tension, the muscle may lengthen, shorten or remain the same. Although the term 'contraction' implies shortening, it means muscle fibers generating tension with the help of motor neurons.

  • Skeletal muscle contraction is responsible for voluntary movement.
  • Cardiac muscle contraction is responsible for pumping blood to the internal organs and extremities.
  • Smooth muscle contraction is responsible for sustained blood vessel contraction and gastrointestinal contraction.


The process is defined by the Sliding Filament Model. The many steps are as follows (note: the bolded terms are essential ones that you will need to know):

1. A nerve impulse sent voluntarily or involuntarily travels through motor neurons to the sarcolemma.

2. The nerve impulse travels along the sarcolemma and down the T-tubules.

3. From the T-tubules, the impulse travels to the sarcoplasmic reticulum, which releases calcium in response.

4. Calcium fills the binding sites in the troponin molecules, altering their shape and position. This allows movement of the attached tropomyosin molecule.

5. The movement of the tropomyosin permits the myosin head to contact actin.

6. Contact with actin causes the myosin head to swivel.

7. The myosin head remains firmly attached to actin while swiveling. So when the head swivels it pulls the actin with it (and, therefore, the entire myofilament).

8. At the end of the swivel, ATP fits into the binding site on the cross-bridge, breaking the bond between the cross-bridge (myosin) and actin. The myosin head then swivels back; the ATP breaks down to ADP and phosphate, and the cross-bridge again binds to an actin molecule.

9. As a result, the myosin head is once again firmly bound to actin. However, because the head was not attached to actin when it swiveled back, the myosin head will bind to a different actin molecule (i.e one further back on the myofilament). Once the head is bound, the cross-bridge will swivel; step 7 is repeated.

As long as calcium is present and attached to troponin, steps 7--9 will repeat. As they do, the thin myofilament is being pulled by the myosin heads of the thick myofilament. Thus, the thick and thin myofilaments are actually SLIDING PAST EACH OTHER. This is why it is called the Sliding Filament Model.

Force summation Force summation describes the addition of individual twitch contractions to increase the overall intensity of muscle contraction. This can be achieved two ways:

  • Multiple Fiber Summation

When a weak signal is sent by the Central Nervous System, the smaller more excitable motor neurons are stimulated first. As the strength of the CNS's signal increases, gradually larger motor units contract, like a tidal wave increasing in size.

  • Frequency Summation'

For skeletal muscles, the force exerted by the muscle is controlled by varying the frequency at which the action potentials are sent to muscle fibers. The fibers contract asynchronously.


Troponin is a complex of three regulatory proteins; it is integral to muscle contraction. Troponin is a part of cardiac and skeletal muscle but not smooth muscle. Its primary function is to bind to Tropomyosin. The individual subunits of Troponin have different specific functions:

  • Troponin C: Binds to Calcium ions
  • Troponin T: Binds to Tropomyosin, interlocking to form a Troponin-Tropomyosin complex.
  • Troponin I: Binds to Actin in thin myofilaments to hold the Troponin-Tropomyosin complex in place

Tropomyosin is an Actin binding protein that regulates Actin mechanics within muscle. It is important for muscle contraction, as it regulates the binding of myosin and Actin.

Muscular System Diseases

Muscular System Diseases
Disease Description Cause Symptoms Prevention Treatment
Muscular Dystrophies A group of inherited diseases that are characterized by weakness and deterioration of muscle tissue. The tissue is slowly replaced by fat, rendering the patient immobile Genetic mutation Muscle weakness, lack of coordination, frequent falling, ptosis (eyelid dropping) No cure, medications, therapy There is no cure, but corrective surgery, exercise, and physical therapy can help patients condition improve
Poliomyelitis A viral disease that affects the nerves and can lead to paralysis. There are four types of polio: paralytic, bulbar, spinal, and bulbospinal polio. Paralytic polio destroys motor neurons within the spinal cord and brain stem, inflaming the central nervous system. Spinal polio is the most common form of poliomyelitis. It is a viral invasion of motor neurons; the virus destroys ganglia. Paralysis is rarely seen in fingers and toes, but most often where limbs meet body.Bulbar polio destroys nerves within the bulbar region of the brain stem. Symptoms include difficulty breathing and swallowing. Bulbospinal polio is a combination of the symptoms of bulbar polio ad spinal polio. Infection with the poliovirus Paralysis, difficulty breathing and swallowing, fever, sore throat, vomiting, no appetite, stiffness There are two ways to prevent polio. Passive Immunization, and vaccines. Passive Immunization involves injecting purified gamma globulin from a polio patient either into someone who has contracted polio or a health individual. This halts polio or prevents it in 80% of cases. Because of the impracticality of obtaining that many gamma globulin samples from polio-infected patients, it was deemed ineffective for wide scale use. Vaccines are the other way to prevent polio. Two polio vaccines are the Inattenuated Poliovirus Vaccine (developed by Jonas Salk) and the Oral polio Vaccine (developed by Albert Sabin) Antibiotics, medications, physical therapy, pain killers
Myasthenia gravis Antibodies block Ach receptors at the neuromuscular junction Nerve impulse to initiate or sustain movement does not reach the muscle cells sustain movement Eyelid drooping, swallowing difficulty, double vision, trouble talking Rest, avoid extreme temperatures and emotional stress Medications such as anticholinesterase agents, immunospurresive drugs; thyrectomy (removal of thymus gland)
Tetanus A medical condition characterized by prolonged contraction of skeletal muscles Tetanospasmin, a neurotoxin produced by the bacterium Clostridium tetani Spasms in the jaw, chest, neck, back and abdominal muscles, which can lead to fractures, breathing, and muscle tears; drooling; fever; irritability; and problems with swallowing The Tdap vaccine with tetanus toxoid Antibiotics; bed rest; medicine to reverse the poison (tetanus immune globulin); muscle relaxers; sedatives; surgery to clean the wound
Fibromyalgia Unknown Long-term, body-wide pain and tender points in joints, muscles, tendons, and other soft tissues (deep-aching, radiating, gnawing, shooting or burning, and ranges from mild to severe) Unknown Medications, patient education, physical therapy, and counseling are usually recommended; in mild cases, symptoms may go away when stress is decreased or lifestyle changes are implemented
Carpal Tunnel Syndrome Common in people who perform repetitive motions of the hand and wrist, such as typing or painting Numbness or tingling in the thumb and next two or three fingers of one or both handsn or the palm of the hand; pain extending to the elbow or in wrist or hand in one or both hands; problems with coordination in one or both hands; weakness in one or both hands Avoiding repetitive motions. Ergonomic aids may help, as may tools designed to not hurt the wrist Splint, hot or cold compresses, reduction of stress on wrist, anti-inflammatory drugs, and carpal tunnel release surgery
Chronic Fatigue Syndrome Unknown; common in women ages 30 to 50 Fatigue or tiredness, never experienced to this extent before (new onset), lasting at least 6 months and not relieved by bed rest; fatigue that is severe enough to restrict activity (serious fatigue develops with less than one-half of the exertion compared with before the illness Unknown No cure; treatments include: a healthy diet, combined with antidepressant drugs in some cases, usually low-dose tricyclic antidepressants, cognitive-behavioral therapy (CBT) and graded exercise for some, medication, sleep management techniques. Activity management and relaxation techniques are also recommended
Myositis A general term for muscle inflammation; only infectious and drug-induced myositis are preventable An injury, infection, or autoimmune disease Muscle weakness, sometimes with muscle pain; general tiredness and fatigue; trouble climbing stairs, standing from a seated position, or reaching up; difficulty swallowing For infectious and drug-induced myositis: get a flu shot each year; thoroughly cook pork and other meats; never inject illegal drugs under your skin or into your muscles - with prescription drugs that are injected, the injection site should be as clean as possible; keep your skin clean; take the lowest number and lowest doses of medications that are necessary No cure; treatments include: corticosteroids and other immunosuppresants; anti-inflammatories; exercise; rest; nutrition; reduction of stress

Muscles have many important functions in the body. They:

  • Enable movement
  • Aid in respiration (diaphragm)
  • Aid in digestion
  • Protect internal organs
  • Help move blood throughout the body

Terms to Understand

  • Flexors: Muscles that bend at the joint, decreasing the interior angle of the joint. Example: biceps brachii.
  • Extensors: muscles that unbend at the joint, increasing the angle. Example: triceps brachii.
  • Abductors: muscles that pull the appendages away from the body.
  • Adductors: muscles that pull appendages towards the body.

Injuries of the Muscular System

Tendinosis/Tendinitis is an inflammatory injury resulting from overuse. In Tendinosis, the collagen matrix is broken down, causing the tendon to dysfunction. Alterations in vascularity can lead to Tendinosis.

Tenosynovitis is a chronic overuse tendon problem resulting consistent overloading of the tendons. There is friction between the tendon and surrounding synovial sheath, causing intense irritation. In order to function properly, a tendon must be able to glide freely within its synovial sheath. Note: this is very similar to tendinosis. In symptoms, the two are identical. The only difference is that tenosynovitis occurs in tendons with synovial sheaths, while tendinosis occurs in tendons that no not have synovial sheaths.

An Avulsion is an acute tendon injury resulting from high tensile loads, in which a tendon is forcibly torn away from its attachment site at the bone. Avulsion most commonly occurs in regions where a large muscle attaches at a small site at the bone. (i.e hamstring)

A Strain occurs when a muscle or the connective tissue it attaches to is over stretched or torn.

A Sprain is similar to a strain, but with ligaments instead of muscle.

Cramps are what happens when a muscle involuntarily and forcefully contracts. Causes: dehydration and overuse.

A Repetitive Strain Injury is similar to a muscle strain, only it involves repeated minor stretching of a tendon or joint. Over time, this causes inflammation.

A Haematoma or bruised muscle occurs when direct force causes a muscle to bleed.

Useful Links