Cell Biology

From Science Olympiad Student Center Wiki
(Redirected from Cell Biology C)
Jump to: navigation, search
Cleanup.png
This page requires cleanup to meet our quality standards.
Please improve the page if possible.
Cell Biology
Life Science & Study Event
Forum Threads 2016 2015
2010 2009
Tests
There are no images available for this event
Question Marathons 2016 2015
This event was not held recently in Division B
Division C Champion The Charter School of Wilmington



In Cell Biology, teams answer questions and/or perform lab tasks relating to cell biology and cellular biochemistry. The event was most recently run nationally in Division C in 2015 and 2016.

Overview

Cell Biology is an event about eukaryotic and prokaryotic cells. According to the rulebook, questions may include the following material: cell structure, function and classification, cellular respiration, protein synthesis, the cell cycle, DNA replication, RNA synthesis, viral structure and function, molecular genetics, DNA sequencing and analysis, DNA fingerprinting, and immunology. Some of these topics are tested only at the National level. Many of the topics are covered in AP Biology courses, but some tests will go into greater depth or may cover a broader scope of topics than an AP Biology course would. The event can be administered as a sit-down test, but it is usually a series of stations.

Strategy

An important strategy for this event is having trust between partners. Lots of time can be wasted debating the answer to a question instead of moving on, which can leave many questions unanswered. This lack of trust is often the difference between the partners placing or not placing in their event, or worse, not qualifying for a future tournament. This lack of trust can be combatted by practice. Learning how to divide the test to give each partner their strongest areas will help assure that the questions are more likely to be correct.

Do not worry about previous stations. When someone is focused on mistakes at previous stations, they are likely to not pay attention to the current station. This may result in worse scores and a lowered chance of medaling. Participants are not able to change their previous work and it is not something to be worrying about when there are more important things to be done. Taking a deep breath and focusing on the work ahead helps the participant not worry and improve their scores.

It is important to learn the material thoroughly. Frequent study and practice can help cultivate confidence and develop team chemistry, as well as increase understanding of the subject matter.

Mnemonic devices can be extremely effective, especially in dealing with more complex topics. These methods allow for quick and accurate recollection of information throughout the event.

Finally, if time allows, utilize a technique for writing down brief summaries of unanswered questions and returning to them at a later point. Whether it be a rest station, tiebreaker station, or another regular station that is more quickly finished, it is far better to spend down time answering questions.


Quick Overview of Helpful Ideas

  • Practice often and early to facilitate team chemistry, learning the material
  • Mnemonic devices
  • Mutual trust and respect
  • Move on. Do not waste time
  • Spend down time reviewing past questions, answering unanswered

Enzymes

Enzymes are special proteins that regulate nearly every biochemical reaction in the cell. Proteins are built from amino acids, which have a carboxyl end (C-terminus), an amino end (N-terminus), an “R” group and a hydrogen, with carbon as the center.

There are four different levels of structure for an enzyme:

  • Primary Structure - the unique sequence of amino acids
  • Secondary Structure - coils and folds in the polypeptide chain (beta pleated sheet or alpha helix)
  • Tertiary Structure - determined by interactions among various side chains (R groups). It is the unique shape of a protein and it determines the protein’s function.
  • Quaternary Structure - Results when a protein consists of more than one polypeptide chain

Enzymes function to:

  • Provide energy to cells
  • Build new cells
  • Aid in digestion
  • Break down complex molecules (“substrate” = reactant)
  • Catalysts (speed up chemical reactions without being used up or altered)

The function of an enzyme is determined by its structure. The structure of an enzyme, especially its primary structure, is determined during protein synthesis. Other factors such as pH, temperature, and quantity also affect an enzyme's effectiveness.

Membrane Structure

Cell membrane - a selectively permeable membrane that consists of a phospholipid bilayer with proteins of various lengths and sizes interspersed and cholesterol among the phospholipids

Fluid mosaic model - states that the phospholipid bilayer behaves more like a fluid than a solid, so lipids and proteins move laterally within the bilayer and the pattern or “mosaic” of lipids and proteins constantly changes

Function of the membrane is to prevent the loss of critical cellular material such as proteins, nucleic acids, carbohydrates, the building blocks of thos macromolecules (amino acids, nucleotides, and sugars), and ATP

Outer portion → hydrophilic (water-loving) head of the phospholipid which consists of a “variable” head group (a simple organic molecule molecule, ex: choline), a negatively charged phosphate group, and a glycerol the “variable” head group associates with some proteins and allows cells to recruit certain proteins to the cell membrane → important for cell communication

Inner portion → hydrophobic (water-fearing) tail of phospholipid which consists of 2 fatty acids (long chains of hydrocarbons) chain with only single bonds is straight (saturated lipid - solid at room temp), can pack more tightly

Chain with a double bond has a kink, results in a bent chain (unsaturated lipid - liquid at room temp), introduces space because a membrane filled w/ only saturated phospholipids would solid rather than fluid-like at physiological temperature. Tight packing of phospholipids prevents larger molecules (amino acids, carbohydrates) from diffusing by themselves and hydrophobic-ness prevents ions (sodium, potassium, calcium) from diffusing by themselves so small, uncharged stuff is preferable.

Function of the cholesterol (a sterol - steroid alcohol) is to pack between phospholipids, reducing permeability (prevents water-soluble molecules from diffusing across) and increasing rigidity (four linked hydrocarbon rings + hydrocarbon tail + hydroxyl)

Proteins

Function of the proteins is to form channels in membranes that allow the passage of specific molecules or ions; act as enzymes to increase the rate of cellular reactions (and modify proteins in blood or extracellular space); act as receptors that detect the presence of specific molecules or ions in the external environment; and interact with proteins in other membranes, generating sites of attachment between membranes and cells

Integral membrane proteins - exposed to interior AND exterior

  • Form channels (or pores or pumps), receptors (that recognize & respond to hormones), or adhesion points
  • Also can be cell-surface markers, such as glycoproteins which have carbohydrates that act as labels attached to the external side (these labels allow cells to recognize each other and viruses use the labels as “docks” to enter and infect cells)
  • Can span membrane at least once and cross it several times
  • They are permanently embedded and can only be removed through expenditure of large amounts of energy or digestions

Peripheral membrane proteins - exposed to one side (interior OR exterior) provide structural support to membranes

  • Participate in transmitting cell signaling events
  • Alter the topology of membranes in the secretory pathway
  • Can be enzymes
  • Associate with the head groups of specific phospholipids or portions of integral membrane proteins (hence the name “peripheral”)

Unlike integral proteins, the association is impermanent - they can be easily removed by changing the composition of the membrane or the morphology or charge of the protein

Some proteins in the outer leaflet form covalent links (through the amino acids in their C-terminuses) with the head groups of phospholipids → these are the proteins that act as enzymes

Cytoskeleton

Structural support (maintaining shape & preventing damage) for the cell membrane is provided by cytoskeleton.

  • Sits directly under the cell membrane and is composed of a “mesh” of actin filaments
  • Interacts with integral membrane proteins by limiting the diffusion of membrane proteins and providing a stable framework to which membrane proteins attach
  • Prevents damage to membranes when external forces pull or push on integral membrane proteins
  • Microtubules that form unique structures (ex: 9 + 2 arrangement for cilia)

Movement Across Membranes

Passive Transport

Movement of molecules that do not require the energy of the cell.

(Simple) Diffusion

  • the movement of molecules down their concentration gradient (region of high concentration to region of low concentration) without the use of energy

rate of diffusion varies from membrane to membrane because of different selective permeabilities

  • things that pass easily: small, uncharged stuff (ex: water, lipids (bc nonpolar), some waste, some amino acids, oxygen (bc nonpolar), carbon dioxide)

Osmosis

  • the passive diffusion of water down its concentration gradient (region of high concentration to region of low concentration) across selectively permeable membranes
  • water will flow from a region with a lower solute concentration (hypotonic) to a region with a higher concentration (hypertonic) → water “dilutes” area with more solute and makes area with less solute less watery until both areas have equal concentration of solute

Facilitated Diffusion

  • the diffusion of particles across a selectively permeable membrane with the assistance of the membrane’s transport proteins
  • channels are specific in what they can carry and have binding site designed for molecules of interest → does not require energy

Active Transport

The movement of particles across a selectively permeable membrane against its concentration gradient (from low concentration to high), requiring an input of energy (ATP) ***vital to the ability of cells to maintain particular concentrations of substances despite environmental concentrations***

Sodium-potassium pump

  • makes sure that cells have a very high concentration of potassium and a very low concentration of sodium at all times (diffusion wants to move sodium in and potassium out to equalize)
  • moves 2 potassium in for every 3 sodium out against their respective concentration gradients
  • major pump in animal cells

Endocytosis - a process in which substances are brought into cells by the enclosure of the substances into a membrane-created vesicle

Pinocytosis - involves the transport of solutes or fluids

Phagocytosis - the movement of large particles or whole cells (ex: phagocytes are immune cells which engulf bacteria and viruses and eliminate them with lysosomal enzymes)

Exocytosis - a process in which a vesicle functions like a trash chute by escorting the (packaged) substance to the plasma membrane, fusing with the membrane, and ejecting the substance outside the cell

Tonicity

Hypertonic - when the concentration of solute molecules outside the cell is higher than the concentration in the cytosol, the solution outside is hypertonic to the cytosol (and cytosol is hypotonic to outside solution), so water diffuses out of the cell until equilibrium is established

Hypotonic - when the concentration of solute molecules outside the cell is lower than the concentration in the cytosol, the solution outside is hypotonic to the cytosol (and cytosol is hypertonic to outside solution), so water diffuses into the cell until equilibrium is established

Isotonic - when the concentrations of solutes outside and inside the cell are equal, the outside solution is said to be isotonic to the cytosol, so water diffuses in and out of the cell at equal rates and there is no net movement of water

Animal Cell

  • in hypertonic environment, water rushes out of the cell to establish equilibrium and cell shrivels
  • in hypotonic environment, water rushes into the cell to establish equilibrium and cell lyses (bursts)
  • isotonic environment is IDEAL

Plant Cell

  • in hypertonic environment, water rushes out of the cell to establish equilibrium and cell becomes plasmolyzed (shrinking of cell’s cytoplasm away from the cell wall)
  • in isotonic environment, water diffuses in and out at equal rates but cell is flaccid
  • hypotonic environment is IDEAL because water rushes into the cell to establish equilibrium and fills the central vacuole, causing it to press against the cell wall and create turgor pressure (turgid plant cell is best)

Contractile vacuole

Some cells prefer a hypotonic environment, so as cells accumulate water, they must pump excess water out in order to maintain a lower concentration of water in the cytosol (maintain osmotic pressure). A contractile vacuole is an organelle that uses energy to collect excess water and then contract, pumping water out of the cell (found in paramecium).

Cell Cycle

  • Interphase - DNA is chromatin (chromosomes not visible), cell spends most time here (90%)
  • G1 phase - Cell grows to mature size and makes sure it has all material necessary for DNA synthesis, also obtains nutrients and begins metabolism
  • G1 checkpoint (aka restriction point)

growth factors (and other external influences) play a role in carrying the cell past the G1 checkpoint. It’s point at which the cell irreversibly commits to the cell division process and goes into S phase (if all conditions favorable) or advances into G0

Conditions:

  • cell is appropriate size
  • cell has adequate energy reserves
  • no damage to DNA
  • cell can also halt the cycle and try to remedy problematic condition

G0 phase (aka inactive phase) - Cell makes the decision to exit cycle after G1 and does not replicate DNA or divide (ex: fully developed cells in the central nervous system)

S phase - DNA is replicated (synthesized) so that each daughter cell will have a complete set of chromosomes after the parent cell divides; transition to S phase is signaled by cyclins and CDKs

G2 phase - Cell grows more and prepares for division by making sure that it has the material (ex: doubles of organelles) necessary for the physical separation and formation of daughter cell

G2 checkpoint- bars entry into mitotic phase if conditions not met

Conditions:

  • assessment of cell size and protein reserves
  • ensure that all of the chromosomes have been accurately replicated without mistakes or damage
  • if there are problems with DNA, cell halts the cycle and tries to complete DNA replication or repair damaged DNA

No problems → CDKs signal beginning of mitotic cell division

  • Mitosis (10%) - divides into 2 diploid (2n) daughter cells; all cells of the body other than the cells of the gonads
  • Prophase - Nucleus and nucleolus disappear; chromosomes appear as two identical, connected sister chromatids; mitotic spindle (made of microtubules) begins to form; centrioles move to opposite poles of the cell (plant cells do not have centrioles)
  • Metaphase - the sister chromatids line up along the middle of the cell, ready to split apart
  • M checkpoint (aka spindle checkpoint)

occurs near the end of the metaphase stage of mitosis determines whether all the sister chromatids are correctly attached to the spindle microtubules cycle will not proceed until the kinetochores of each chromatid pair are firmly anchored to at least 2 spindle fibers arising from the opposite poles of the cell

  • Anaphase - The sister chromatids split and move via the microtubules to opposite poles of the cell (pulled by the spindle apparatus so that each pole of the cell has a complete set of chromosomes
  • Telophase - the nuclei for the newly split cells form; the nucleoli reappear, and the chromatin uncoils
  • Cytokinesis - Newly formed daughter cells split apart. Animal cells are split by the formation of a cleavage furrow, plant cells by the formation of a cell plate

or

Meiosis - divides into 4 haploid (n) daughter cells; occurs in cells of gonads to produce gametes (part of process of sexual reproduction), 2 divisions

  • Meiosis I
  • Prophase I - Each chromosome pairs with its homolog. Crossover (synapsis) occurs in this phase. The nuclear envelope breaks apart and spindle apparatus begins to form.
  • Metaphase I - Chromosomes align along the metaphase plate matched with their homologous partner. This stage ends with the separation of the homologous pairs.
  • Anaphase I - Separated homologous pairs move to opposite poles of the cell.
  • Telophase I - Nuclear membrane reforms; process of division begins.
  • Cytokinesis - After the daughter cells split, the two newly formed cells are haploid (n).

Intermission

Meiosis II

  • Prophase II - Nuclear envelope breaks apart and spindle apparatus begins to form.
  • Metaphase II - Sister chromatids line up along the equator of the cell.
  • Anaphase II - Sister chromatids split apart and are called chromosomes as they are pulled to the poles.
  • Telophase II - The nuclei and the nucleoli for the newly split cells return.
  • Cytokinesis - Newly formed daughter cells physically divide.

DNA Structure

DNA = deoxyribonucleic acid, has a double helix shape of uniform width (Rosalind Franklin’s photos)

Polymers of DNA = nucleotides (nitrogen-containing base + phosphate group + deoxyribose sugar)

  • Nitrogen-containing bases (4)
    • 2 Pyrimidines (single ring) - thymine and cytosine
    • 2 Purines (double ring) - adenine and guanine

Base pairing rules state that:

  • adenine bonds with thymine (2 hydrogen bonds)
  • guanine bonds with cytosine (3 hydrogen bonds)
    • Chargaff’s rule states that amount of A=T (equal %s) and amount of G=C (equal %s)

Deoxyribose sugar has 5 carbons

  • Backbone of DNA is made up of covalently bonded deoxyribose sugars and phosphates
  • DNA (in eukaryotic cells) wraps around proteins → histones (maintain shape of chromosome & aid in tight packaging of DNA) or nonhistone proteins (control activity of specific regions of DNA)

Cell Structure

Cell Structure and Organelles
Organelles Functions Images
Nucleus
Most obvious organelle in any eukaryotic cell
Enclosed in double membrane
Communicates with surrounding cytosol via nuclear pores
Filled with nuclear chromatin-DNA and surrounding protein
Nucleolus
Inside the nucleus
Produces ribosomes which then leave the nucleus and go into the rough endoplasmic reticulum where they’re critical to protein synthesis
Cytosol
“soup” where all organelles reside
Where most of cellular metabolism occurs
Mostly water, but full of proteins that control cell metabolism including glycolysis, transcription factors, intracellular receptors, etc.
Cytoplasm
Collective term for cytosol and organelles in it
Centrosome
AKA microtubule organizing center (MTOC)
Area where microtubules are produced
Animal cell centrosome is small pair of organelles called centrioles
Centriole
Ring of nine groups of fused microtubules
3 microtubules in each group
Microtubules and centrioles are part of the cytoskeleton
The centrioles in a complete animal centrosome are perpendicular
Golgi
Membrane-Bound Structure with a single membrane
Actually a stack of membrane-bound vesicles that are important in packaging macromolecules for transport elsewhere in the cell
Stack of larger vesicles surrounded by smaller vesicles containing packaged macromolecules
Lysosomes
Membrane-Bound
Common in animal cells
Contain hydrolytic enzymes necessary for cell digestion
In white blood cells that eat bacteria, lysosomes are released into the vacuole around the bacteria and kill them
Necrosis: uncontrolled mass release of lysosomal contents into cell that cause cell death
Peroxisome
Protect the cell from its own production of toxic hydrogen peroxide
Ex. white blood cells produce hydrogen peroxide to kill bacteria
Oxidative enzymes in peroxisomes break down hydrogen peroxide into water and oxygen
Secretory Vesicles
Cell secretions (hormones, neurotransmitters) are packaged in secretory vesicles at Golgi apparatus
Secretory vesicles then transported to cell surface for release
Cell Membrane
Cell enclosed in membrane, a double layer of phospholipids-lipid
Exposed heads are hydrophilic, hidden tails are hydrophobic
This allows membrane to act as protective barrier to uncontrolled water flow
Proteins on membrane
Receptors for odors, tastes, and hormones
Responsible for controlled entry and exit of ions like sodium potassium, calcium, and chloride
Mitochondria
Provide energy-power centers
About the size of bacteria
Membrane bound-double membrane
Outer membrane smooth, inner forms folds(cristae) which greatly increases the inner membrane’s surface area.
Food (suger) is combined with oxygen to make ATP on these cristae
Vacuole
Membrane-bound sac
Plays roles in intracellular digestion and release of cellular waste products
Generally small in animal cells
Large in plant cells
Storing nutrients and waste products
Helps increase cell size during growth
Acts like lysosomes of animal cells
Regulates turgor pressure in cell-water in vacuoles produce rigidity in plant
Cell Wall
Only found in plant cells
Rigid protective cell wall made of polysaccharides (usually cellulose)
Provides and maintains shape of cells and serves as protective barrier
Fluid collects in vacuole and pushes against cell wall
This turgor pressure responsible for crispness of fresh vegetables
Chloroplasts
Specialized organelles found in higher plant cells
Contain chlorophyll responsible for plants’ green color and absorbing energy from sunlight
Energy used to convert water and carbon dioxide into sugars through photosynthesis
Have a double outer membrane
Within stroma are thylakoids appearing in stacks called grana
Smooth Endoplasmic Reticulum
Vast network of membrane-bound vesicles and tubules called endoplasmic reticulum
A continuation of the outer nuclear membrane and its varied functions suggest the complexity of the eukaryotic cell
Named because of its smooth appearance in electron microscopy
Plays different functions depending on cell type including
Lipid and steroid hormone synthesis
Breakdown of lipid soluble toxins in liver cells
Control of calcium release in muscle cells
Rough Endoplasmic Reticulum
Appears pebbled by ribosomes on its surface
Proteins synthesized by ribosomes collect in rough ER for transport throughout the cell
Ribosomes
Membrane bound
Packets of RNA and protein
The site of protein synthesis
Comprised of two parts, large and small subunit
Cytoskeleton
Maintains cell shape
Primary importance is cell motility-internal movement of organelles
Organized network of three primary protein filaments
Microtubules - Largest filaments. They mainly provide mechanical support, as well as organize the cytoplasm, move the cell, and separate chromosomes during telophase. 25 nm diameter.
Intermediate filaments - "Middle-sized filaments." This also has a main job of providing support for the cell when it comes into contact with other cells. 10 nm diameter.
Actin filaments (Microfilaments) - Smallest filaments. Most abundant protein in eukaryotic cells. This is used in muscle contraction, cell movement, cytokinesis, cell signaling, movement of organelles. 7 nm diameter.

During animal cell division centrioles replicate and centrosome divides. Two resulting centrosomes and centrioles move to opposite ends of the nucleus. From each centrosome, microtubules grow into a spindle which is responsible for separating replicated chromosomes in the daughter cells.

Difference between Prokaryotic and Eukaryotic Cells

Prokaryotic Cells

Diagram of the Typical Prokaryotic Cell

Prokaryotic cells are single-celled microorganisms most often containing a cell wall, but lacking membrane-bound organelles found in Eukaryotes. Eukaryotic cells contain a nucleus, plasma membrane, and membrane-bound organelles.

Prokaryotic Cells contain:

Cell Membrane: Functions in transport, the movement of substances in and out of the cell, and in energy production (breakdown of large molecules, photosynthesis).

Cell Wall: Gives structural strength (rigidity) to the cell.

Capsule: Jelly-like substance which protects the cell wall from environmental damage.

Nucleoid: Contains a single circular molecule of DNA.

Cytoplasm: Region surrounding the nucleoid and within the cell membrane. Contains ribosomes and RNA (site of protein synthesis).

Vacuole: Site of photosynthesis (storage).

Flagellum: Protein fiber the functions in movement.

Eukaryotic Cells

Diagram of a typical Eukaryotic Animal Cell
Diagram of a typical Eukaryotic Plant Cell

Eukaryotic Cells contain:

Cell Wall: Found in plant cells, provides protection and support. Prevents the cell from bursting when turgid.

Plasma Membrane: Control substances coming in and out of the cell. Selectively permeable. Consists of a phospholipid bilayer and various embedded proteins.

Cilia: Sweeps materials across the cell surface.

Flagellum: Enables a cell to propel and move in different directions (uncommon).

Cytoplasm

Cytosol: The fluid portion of a cell's cytoplasm.

Endoplasmic Reticulum (ER): The passageway for transport of materials within the cell, a network of intracellular membranes where secreting proteins are synthesized. Rough ER is the ER and ribosomes, this supplies raw materials for protein synthesis. Smooth ER is the ER without ribosomes, this functions in the breakdown of fats attached to the rough ER in the Golgi Complex and synthesizes lipids.

Ribosomes: The site of protein synthesis, this is a cytoplasmic particle that contains RNA and proteins.

Golgi Apparatus: The "packing center" of the cell, this is a membraneous organelle that packages and sorts newly synthesized secretory proteins. Also, does the final modifications of proteins and lipids.

Mitochondria: Consists of an outer membrane and a convoluted inner membrane, this is the site of aerobic cellular respiration and the site of ATP production.

Lysosomes: The "recycling center" of the cell, this contains enzymes to digest ingested material or damaged tissues.

Peroxisomes: Contains specialized enzymes whose functions involved hydrogen peroxide.

Chloroplasts: Store chlorophyll in a plant cell that is used in the photosynthesis light reaction.

Vacuoles: The storage in a cell, these increase the cell surface area.

Centrioles: Organize the spindle fibers during cell division.

Resources and Study Materials

  • Any AP Biology or College Biology Textbook. Usually, it is only the first 7-10 chapters that contain the pertinent information. Openstax has a free Biology textbook for download. Campbell-Reece has an especially good biology textbook.
  • Any high school biology teacher, and especially the AP/IB Biology teacher (if available). Seek out these teachers as they can be important and at times invaluable resources for learning difficult or confusing material. Teachers also can aid in answering questions that may arise during study.
  • AP Biology CD. Most AP Biology teachers have an interactive CD that comes with the textbook that they use. If possible, borrowing the CD can provide another portable resource.
  • Cliff's AP Biology Book. This book is extremely useful, great for reviewing the major points of each subject area in this event.
  • Also, Barron's AP Bio book goes into many of the specifics. Therefore, students and competitors should have a basic understanding of most of the topics before delving in deeper here.
  • Old tests. Event members should ask the coach for old tests from previous invitationals as most invitationals provide the test and answers after the competition is over. The Test Exchange on this site is also an excellent source for additional practice tests.
  • Review, study, and practice often. Trust, respect, and understanding communication is key to an effective partnership.

Links

CELLS alive!

Harvard Dept of MCB - Biology Links

UW Department of Pathology Cytogenetics

The Biology Project