Difference between revisions of "Fossils"

From Science Olympiad Student Center Wiki
Jump to: navigation, search
m (Geologic Time)
(Paleozoic Era)
 
(92 intermediate revisions by 25 users not shown)
Line 1: Line 1:
{{Cleanup}}
 
 
{{EventLinksBox
 
{{EventLinksBox
 
|active=yes
 
|active=yes
Line 10: Line 9:
 
|2015thread=[http://scioly.org/phpBB3/viewtopic.php?f=187&t=5894 2015]
 
|2015thread=[http://scioly.org/phpBB3/viewtopic.php?f=187&t=5894 2015]
 
|2015tests=2015
 
|2015tests=2015
 +
|2015questions=[http://scioly.org/phpBB3/viewtopic.php?f=193&t=5978 2015]
 +
|2016thread=[http://scioly.org/phpBB3/viewtopic.php?f=208&t=7688 2016]
 +
|2016tests=2016
 +
|2016questions=[http://scioly.org/phpBB3/viewtopic.php?f=217&t=7782 2016]
 +
|2019thread=[https://scioly.org/forums/viewtopic.php?f=285&t=12239 2019]
 +
|2019tests=2019
 +
|2019questions=[https://scioly.org/forums/viewtopic.php?f=297&t=12382 2019]
 +
|2020thread=[https://scioly.org/forums/viewtopic.php?f=285&t=15379 2020]
 +
|2020questions=[https://scioly.org/forums/viewtopic.php?f=297&t=15677 2020]
 +
|testsArchive=true
 
|type=Earth Science
 
|type=Earth Science
 
|cat=Study
 
|cat=Study
 +
|B Champion=[[Solon Middle School]]
 +
|C Champion=[[Solon High School]]
 
}}
 
}}
'''Fossils''' is an identification event which rotates with [[Rocks and Minerals]] every three years.  It includes identifying various fossilized animals and plants, providing details about these creatures such as the environment it lived in, its mode of life, how it formed, etc., and answering questions on general paleontology. This article will cover the basic information required for this event as well as give tips on how to succeed at the competition.
 
There is always a [[Fossil List]] you need to be able to identify and know information about.
 
  
==Fossil Formation==  
+
'''Fossils''' is an identification event which rotates with [[Rocks and Minerals]] every two years. Students identify various fossilized animals and plants, provide details about these organisms such as environment, mode of life, etc., and answer questions on general paleontology. This page primarily covers information applicable to the event in general - for details on each of the taxa on the identification list, see [[Fossils/Fossil List]].
 +
 
 +
 
 +
==Fossil Formation==
 
There are several ways that fossils can form, ranging from the organism being replaced by minerals to the organism getting trapped in amber. This section explains the different types of fossils.   
 
There are several ways that fossils can form, ranging from the organism being replaced by minerals to the organism getting trapped in amber. This section explains the different types of fossils.   
  
===Mummification===
+
*'''Mummification''': This rare form of preservation preserves life form with some tissue or skin intact. Specimens that are preserved this way are very fragile. Natural mummification usually happens in dry and cold places where preservation happens quickly and effectively. Mummification is not truly fossilization.
Preserves life form with some tissue or skin intact. Specimens preserved this way are very fragile. This is a rare form of "fossilization". Mummification is not truly fossilization.  
+
 
 +
*'''External Molds''': These are imprints of the organism embedded in rocks.  
  
===External Molds===
+
*'''Casts''': These are formed when external molds are filled with sediment.  
Imprints of the organism embedded in rocks.  
 
  
===Casts===
+
*'''Internal molds''': These occur when sediment fills the shell of a deceased organism such as a bivalve or a gastropod. These remain after the organism's remains decompose to show the internal features of the organism
These are formed when external molds are filled with sediment.  
 
  
===Internal molds===
+
*'''Petrification/Petrifaction/Silicification''': These occur when minerals slowly replace the various organic tissues of an organism. The most common mineral to cause petrification is silicon, but other minerals also work.
These occur when sediment fills the shell of a deceased organism, such as a bivalve or a gastropod. These remain after the organism's remains decompose to show the internal features of the organism
 
  
===Petrification/Petrifaction/Silicification===
+
*'''Carbonization/Coalification''': These occur when over time all parts of the original organism except the carbon are removed from the fossil over time. The remaining carbon is the same carbon that the organism was made of.
These occur when minerals slowly replace the various organic tissues of an organism with minerals. The most common mineral to cause petrification is silicon, but other minerals will also work.
 
  
===Carbonization/Coalification===
+
*'''Recrystallization''': This occurs when original minerals in the fossil over time revert into more stable minerals, such as an apatite shell recrystallizing into the more thermodynamically stable calcite.
These occur when over time all parts of the original organism except the carbon are removed from the fossil over time.  The remaining carbon is the same carbon that the organism was made of.
 
  
===Recrystallization===
+
*'''Replacement''': This occurs when the hard parts of the organism are replaced with minerals over time.
These occur when original minerals in the fossil over time revert into more stable minerals, such as an apatite shell recrystallizing into the more thermodynamically stable calcite.
 
  
===Replacement===
+
*'''Trace fossils''': Trace fossils are fossils that are not part of the organism. These include footprints, burrows, eggshells, and coprolite (fossilized excrement). They give insight into an organism's behavior.  
This occurs when the hard parts of the organism are replaced with minerals over time.
 
  
===Trace fossils===
+
*'''Actual remains''': These are much rarer than other fossil types. These are still intact parts of the organism. Actual remains can be seen preserved in ice, tar, or amber. A good example is mammoth hair, which is often frozen and still preserved.  
Trace fossils are fossils that aren't exactly part of the organism. These include footprints, burrows, eggshells, and my personal favorite, coprolite (or fossilized excrement).They give insight into an organism's behavior.  
 
  
===Actual remains===
+
*'''Tar''': When organisms become trapped in tar, due to the oxygen deprived environment, it allows for the rapid burial of body parts which are well preserved. A good example is the La Brea tar pits in Los Angeles.
These are much rarer than other fossil types. These are still intact parts of the organism. Actual remains can be seen preserved in ice, tar, or amber. A good example is mammoth hair. It is often frozen and still preserved.  
 
  
===Tar===
+
Fossils '''almost''' always form in sedimentary rocks. The extreme heat and pressure needed to form igneous or metamorphic rock often destroys or warps the organism.  
When organisms become trapped in tar, due to the oxygen deprived environment, it allows for the rapid burial of body parts which are well preserved. A good example is the La Brea tar pits in Los Angeles.
 
  
===Other info===
+
When an organism dies, if the conditions are right, it becomes covered in sediments, which, after being subjected to pressure, becomes rock. This takes a very long time, and the actual organism decomposes by then. A soft organism like a worm or jellyfish usually does not get fossilized because it decomposes too fast. Only the hard parts like skeletons and teeth remain long enough to keep the imprint in the rock while the rock is forming.
Fossils '''almost''' always form in sedimentary rocks.  In igneous and metamorphic rocks extreme heat and pressure needed to form them often destroys the fossilizing organisms, or warps it beyond recognition. When an organism dies, if the conditions are right, it becomes covered in sediments, which, after being subjected to pressure, become rock. This takes a very long time, and the actual organism decomposes by then. A soft organism (like a worm or jellyfish) does not get fossilized (usually) because it decomposes too fast. Only the hard parts (skeletons and teeth) remain long enough to keep the imprint in the rock while the rock is forming.
 
  
==Fossil Environments==  
+
===Fossil Environments===  
  
Fossils form (for the most part) in bodies of water, because that's where sedimentation occurs. Fossilization needs to occur in places where the dead organism won't be disturbed, so a place in the ocean devoid of wave activity is required.  Most of these marine fossils do not form in the far depths of the sea known as the Abyssal Zone.  This is because the sediment at the bottom of the Abyssal zone is generally dragged into the mantle of the Earth, as opposed to rising to the land.
+
Fossils form (for the most part) in bodies of water, because sedimentation occurs. Fossilization needs to occur in places where the dead organism will not be disturbed, so a place in the ocean devoid of wave activity is required.  Most of these marine fossils do not form in the far depths of the sea known as the Abyssal Zone because the sediment at the bottom of the Abyssal zone is generally dragged into the mantle of the Earth, as opposed to rising to the land.
  
 
==Sedimentary Rocks==
 
==Sedimentary Rocks==
  
As said above, fossils usually form in water because that's where sedimentation occurs. Here are some of the common sedimentary rocks that fossils can be found in:
+
As said above, fossils usually form in water because sedimentation occurs. Here are some of the common sedimentary rocks that fossils can be found in:
  
*Sandstones/Siltstones: These rocks can usually be found in off-shore deposits or beaches. They commonly preserve water ripples, tracks, petrified wood, dinosaur bones and hard-shelled invertebrates.  
+
*'''Sandstones/Siltstones''': These rocks can usually be found in off-shore deposits or beaches. They commonly preserve water ripples, tracks, petrified wood, dinosaur bones and hard-shelled invertebrates.  
  
*Conglomerates: Fossilized bones and teeth, as well as amphibian and reptile fossils can be found in conglomerates.
+
*'''Conglomerates''': Fossilized bones and teeth, as well as amphibian and reptile fossilscan be found in conglomerates.
  
*Shale: Probably the most common fossil preserving rock, shales can contain fossils that are perfectly preserved. They can contain vertebrates, invertebrates, or plants.
+
*'''Shale''': Probably the most common fossil preserving rock, shales can contain fossils that are perfectly preserved. They can contain vertebrates, invertebrates, or plants.
  
*Limestones: Also a very fossiliferous rock, they represent both shallow and deep tropical seas. Invertebrate fossils, as well as remains of armored fish and shark teeth can be found in limestones.
+
*'''Limestones''': Also a very fossiliferous rock, these represent both shallow and deep tropical seas. Invertebrate fossils, as well as remains of armored fish and shark teeth, can be found in limestones.
  
*Coal/Coal Shales: Plants, fish, insects, marine invertebrates, and even dinosaur footprints can be found in coal deposits.
+
*'''Coal/Coal Shales''': Plants, fish, insects, marine invertebrates, and even dinosaur footprints can be found in coal deposits.
  
It is noted that we may have to identify sedimentary rock. Here are some tips to identify some:
+
Students may be expected to identify sedimentary rocks. Here are some identification tips:
  
*Coquina: As one of my teammates put it, it looks kinda like chewed up oatmeal.
+
*Coquina: Looks like chewed up oatmeal.
  
*Diatomite: It looks similar to chalk limestone, but less chalky.
+
*Diatomite: Similar to chalk limestone, but less chalky and lighter.
  
*Dolomite Rock: It is usually a very light shade of pink.
+
*Dolostone: Usually a very light shade of pink.
  
*Sandstone: It is grainy and it does not have to be layered.
+
*Sandstone: Grainy and it does not have to be layered, though it commonly is.
  
 
*Limestone Chalk: Looks and feels like chalk.
 
*Limestone Chalk: Looks and feels like chalk.
  
*Fossiliferous Limestone: Has fossils that are relatively small. The stone itself does not have to be covered with fossils.
+
*Fossiliferous Limestone: Has fossils that are relatively small, but does not have to be covered with fossils.
 
 
==Modes of life==
 
Different animals have different modes of life (these generally refer to oceanic dwellers, which makes up a bulk of the list). Here are some terms you need to know:
 
 
 
 
 
*Pelagic: Free swimming, such as fish or scallops (scallops "swim" by flapping their shells. It's kinda cool).
 
 
 
*Sessile. Rooted to the floor. Examples include crinoids (sea lilies) and sea anemones.
 
 
 
*Benthic: Lives on the sea floor, e.g crabs, lobsters, crinoids.  
 
  
*Vagrant: Free swimming, same as pelagic.
+
==Modes of Life==
 +
Different animals have different modes of life (these generally refer to oceanic dwellers, which makes up a bulk of the list). The main modes of life are:
  
*Motile: The opposite of sessile; moves around. Examples include anything that is Pelagic/Vagrant, Benthic, or any other organism able to move around.
+
*'''Pelagic''': Free swimming, e.g. fish or scallops (scallops "swim" by flapping their shells).  
  
*Coiled: The outsides of an organism coil around a center point.
+
*'''Sessile''': Rooted to the floor, e.g. crinoids (sea lilies) and sea anemones.  
  
*Planktonic: Doesn't actually swim; floats and is carried along with the ocean's currents.
+
*'''Benthic''': Lives on the sea floor, e.g. crabs, lobsters, crinoids.  
  
==Geologic Time==
+
*'''Vagrant''': Free swimming, same as pelagic.
  
 +
*'''Motile''': The opposite of sessile; moves around. Examples include anything that is Pelagic/Vagrant, Benthic, or any other organism able to move around.
  
Earth's history is broken up several ways. The largest section is the supereon, the only one is the Precambrian. After this the next largest are eons There are four; the Hadean Eon (before 3800 mya (million years ago)), the Archean Eon (3800-2500MYA), the Proterozoic Eon (2500-542MYA) and the Phanerozoic (540 mya to present). Not much is know about the Precambrian, because all of the life forms lacked hard shells or skeletons, making preservation very unlikely. There are, however, fossils called stromatolites that show indications of cyanobacteria. These are first found in the Archaean.  It is possible that the first lifeforms and self replicating RNA strands emerged as early as the mid-Hadean.  The Phanerozoic Eon is when shelled invertebrates began to emerge, and the fossil record expands.
+
*'''Coiled''': The outsides of an organism coil around a center point.
  
 +
*'''Planktonic''': Does not actually swim; floats and is carried along with the ocean's currents.
  
Next, it's split into Eras. Eras are divided based on the dominant life forms at that time. The Paleozoic (meaning "ancient animals", from 540 mya to 243 mya) was dominated by marine invertebrates. Reptiles dominated the Mesozoic (middle animals) Era (from 243 mya to 65 mya), and mammals dominate the Cenozoic Era (65 mya to present, meaning "recent animals"). We are living in the Cenozoic Era now.  
+
==Fossils and Time==
 +
Fossils are an important part of Earth Science as they provide a look back into what life may have been like many million years ago. Since environments can change significantly over long periods of time, fossils are an important way to see how life may have existed in the past.  
  
 +
===Geologic Time===
 +
Earth's history is broken up several ways. The largest section is the '''supereon'''. The only one is the ''Precambrian'', lasting from 4500-540 mya (million years ago). After this the next largest are '''eons'''. There are four; the ''Hadean Eon'' (before 3800 mya), the ''Archean Eon'' (3800-2500 mya), the ''Proterozoic Eon'' (2500-540 mya) and the ''Phanerozoic Eon'' (540 mya to present). Not much is known about the Precambrian, because all of the life forms lacked hard shells or skeletons, making preservation very unlikely. There are, however, fossils called stromatolites that show indications of cyanobacteria. These are first found in the Archaean.  It is possible that the first lifeforms and self-replicating RNA strands emerged as early as the mid-Hadean. The Phanerozoic Eon is when shelled invertebrates began to emerge, and the fossil record expands.
  
The next breakdown are periods. Each era is broken down into periods, except for the Archaean and Hadean Eons, which are only divided into eras. Periods are broken down into Epochs starting after the beginning of the Phanerozoic Eon. All epochs are then further divided into Ages, which can, though rarely are, divided into Chron.  All divisions of time may be distinguished from each other by certain species that lived only in that period, called index fossils, this method is called biogeochronology. These divisions all have counterparts in chronostratigraphy, as Eon/Eonthem, Erathem/Era, System/Period, Series/Epoch, Stage/Age, and Chronozone/Chron.  More on that later. First up, we have the periods of the Paleozoic (there are periods before this but they are rarely used):
+
The next largest sections are '''eras'''. Eras are divided based on the dominant life forms at that time. The Paleozoic (meaning "ancient animals", from 540 mya to 248 mya) was dominated by marine invertebrates. Reptiles dominated the Mesozoic (middle animals) Era (from 248 mya to 65 mya), and mammals dominate the Cenozoic Era (65 mya to present, meaning "recent animals"). We are living in the Cenozoic Era now.
  
[http://geophysics.ou.edu/geol1114/notes/time/FG01_07_timescale.jpg Geologic Time Scale]
+
The next breakdown are '''periods'''. Each era is broken down into periods, except for the Archaean and Hadean Eons, which are only divided into eras. Periods are broken down into Epochs starting after the beginning of the Phanerozoic Eon.  All epochs are then further divided into Ages, which can, though rarely are, divided into Chron.  All divisions of time may be distinguished from each other by certain species that lived only in that period, called index fossils. This method is called biogeochronology. These divisions all have counterparts in chronostratigraphy, as Eon/Eonthem, Erathem/Era, System/Period, Series/Epoch, Stage/Age, and Chronozone/Chron.  
  
*Cambrian: (540 mya to 505 mya) The first period, this is when marine invertebrates start to emerge.
+
====Paleozoic Era====
 +
The periods of the Paleozoic:  
  
*Ordovician: (505 mya to 438 mya) Primitive fish start to form. Index fossil is the trilobite genus Cryptolithus.  
+
*'''Cambrian''': (541.0 mya to 485.4 mya) The first period, when marine invertebrates start to emerge. Part of the Age of Invertebrates.
  
*Silurian:(438mya to 408 mya) Early land animals began to emerge.  
+
*'''Ordovician''': (485.4 mya to 443.8 mya) Primitive fish start to form. Index fossil is the trilobite genus Cryptolithus. Part of the Age of Invertebrates.
  
*Devonian: ( 498 mya yo 360 mya) First forests and amphibians form. Index fossils include Mucrospirifer (brachiopod genus) and Phacops (trilobite genus).  
+
*'''Silurian''': (443.8 mya to 419.2 mya) Early land animals began to emerge. Part of the Age of Fishes.
  
*Carboniferous: Contains both the Mississippian and Pennsylvanian Periods.
+
*'''Devonian''': (419.2 mya to 358.9 mya) First forests and amphibians form. Index fossils include Mucrospirifer (brachiopod genus) and Phacops (trilobite genus). Part of the Age of Fishes.  
**Mississippian: (360 mya to 320 mya) Widespread shallow seas form.  
 
**Pennsylvanian: ( 320 mya to 286 mya) Coal bearing rocks form.  
 
  
*Permian: ( 286 mya to 245 mya) Earliest gymnosperms (cone bearing trees).  
+
*'''Carboniferous''': 358.9 mya to 298.9 mya Contains both the Mississippian and Pennsylvanian Periods. Part of the Age of Amphibians.
 +
**Mississippian: (358.9 mya to 323.2 mya) Widespread shallow seas form.
 +
**Pennsylvanian: ( 323.2 mya to 298.9 mya) Coal-bearing rocks form.  
  
Next come the Mesozoic periods. It was during this time that dinosaurs dominated.  
+
*'''Permian''': (298.9 mya to 251.9 mya) Earliest gymnosperms (cone-bearing trees). Part of the Age of Amphibians.
  
 +
====Mesozoic Era====
 +
During the Mesozoic periods, dinosaurs dominated. This entire era is known as the Age of Reptiles.
  
*Triassic: ( 245 mya to 208 mya) First dinosaurs and earliest mammals.  
+
*'''Triassic''': (251.9 mya to 201.3 mya) First dinosaurs and earliest mammals.  
  
*Jurassic: ( 208 mya to 144 mya) Earliest birds.  
+
*'''Jurassic''': (201.3 mya to 145 mya) Earliest birds.  
  
*Cretaceous:(144 mya to 65 mya) Flowering plants (angiosperms) develop.  
+
*'''Cretaceous''': (145 mya to 66 mya) Flowering plants (angiosperms) develop.  
  
Last are the periods of the Cenozoic. The periods in the Cenozoic differ from the other two eras by being broken down even further in epochs.  
+
====Cenozoic Era====
 +
The periods in the Cenozoic differ from the other two eras by being broken down even further in epochs. This entire era is known as the Age of Mammals.
  
 +
*'''Paleogene''': (66.0 mya to 23.0 mya) Apes begin to appear. It is broken down into epochs:
 +
**Paleocene (66.0 mya to 56.0 mya) "Age of Birds", lasting through the Eocene.
 +
**Eocene: (56.0 mya to 33.9 mya) Further development of mammals. Giant birds rule the land.
 +
**Oligocene: (33.9 mya to 23.0 mya) Rise of true carnivores.
  
*Tertiary: Apes begin to appear. It is broken down into epochs:
+
*'''Neogene''': (23.0 mya to 2.6 mya) Mammals and birds continue to evolve into modern forms. Early hominids appear.
**Paleocene (65 mya to 58 mya)  
+
**Miocene: (23.0 mya to 5.3 mya) Grasses and grazing animals develop.  
**Eocene: (58 mya to 37 mya) further development of mammals.  
+
**Pliocene: (5.3 mya to 2.6 mya) First modern animals.
**Oligocene: (37 mya to 24 mya) Rise of true carnivores
 
**Miocene: (24 mya to 5 mya) Grasses and grazing animals develop.  
 
**Pliocene: (5 mya to 2 mya) First modern animals  
 
  
*Quaternary: Humans appear and develop. This is the period we are still in today.  
+
*'''Quaternary''': (2.6 mya to present) Humans appear and develop. This is the period we are still in today.  
**Pleistocene: (2 mya to 10,000 ya): First humans.  
+
**Pleistocene: (2.6 mya to 11,700 ya): The most recent period of repeated glaciations.
**Holocene: (10,000 ya to present): The epoch in which we live today. The Holocene is further divided into the Boreal Age, followed by the Atlantic Stage.
+
**Holocene: (11,700 ya to present): The epoch in which we live today. The Holocene is further divided into the Boreal Age, followed by the Atlantic Stage.
 +
**Anthropocene: A proposed epoch marking the beginning of human impact on the Earth.
  
And who knows? Maybe another type of animal will dominate us and another era will be born. You never know.
 
  
 +
====New System for Geologic Time====
 
A new system of geologic time was devised early in 2007. It goes like this:
 
A new system of geologic time was devised early in 2007. It goes like this:
*Tertiary is broken into the Paleogene and Neogene
+
*'''Cenozoic''' is broken into the Paleogene, Neogene, and Quaternary
**Paleogene
+
**'''Paleogene''': Mammals develop from small creatures to diverse animals
 
***Paleocene
 
***Paleocene
 
***Eocene
 
***Eocene
 
***Oligocene
 
***Oligocene
 
+
**'''Neogene''': Hominids develop, insects evolve into roughly modern forms
**Neogene
 
 
***Miocene
 
***Miocene
 
***Pliocene
 
***Pliocene
 
+
**'''Quaternary'''
**Quaternary
 
 
***Pleistocene
 
***Pleistocene
 
***Holocene
 
***Holocene
  
As you may have noticed, the changes do not apply to the Quaternary, but for the sake of completeness, this period is included under the modification.
+
:[http://www.enchantedlearning.com/subjects/Geologictime.html Here is a basic overview of each time period] that is specific enough for this event.
 +
:[http://upload.wikimedia.org/wikipedia/en/7/72/Geological_Time_Scale.png Another good geologic time chart] that compares the length graphically for all divisions of time.
 +
:As of the 2019 season, competitons are required to use [https://www.soinc.org/sites/default/files/uploaded_files/FossilsGeologicTimeScale.pdf the official Science Olympiad] geologic time scale.
  
[http://www.enchantedlearning.com/subjects/Geologictime.html Here's a basic overview of each time period], it's a really great chart, very specific, at least specific enough for us.
+
===Index Fossils===
 +
'''Index fossils''' are fossils of organisms that lived only in four periods. They developed near the beginning of the period, and became extinct before the end. Note that this refers to genera or species, not entire classes or families. Index fossils are extremely useful for dating rock. They can not be used to tell absolute age (we need carbon-14 (or other isotope) testing for that), but can be used for relative dating. By comparing two rock outcrops with the same index fossil, we can conclude that they are roughly the same age, (give or take several million years). To be an index fossil, the organism must have had a wide geographic range, because if a fossil is found only on some barren outcrop in the desert, it can not be used to date rocks from many miles away. It also helps to be fairly common - for instance, dinosaurs of North America are not index fossils because of their rarity.
  
[http://upload.wikimedia.org/wikipedia/en/7/72/Geological_Time_Scale.png Another good geologic time chart]
+
For example, Genus ''Mucrospirifer'' can be an index fossil for the Cambrian Period because they only existed during that period. Therefore, if a rock is found with a ''Mucrospirifer'' in it, it can be assumed that the rock is from the Devonian Period.
  
It is very good because it compares the length graphically for all divisions of time.
+
===Relative Dating===
 +
Relative dating orders events in chronological order. It tells which events came first, but it does not specify the exact date of which it occurred. There are different methods that are used for relative dating: the principle of superposition, the principle of original horizontality, the principle of cross-cutting relationships, and the principle of inclusions.
  
==Index Fossils==
+
*'''Principle of Superposition''': If there are undisturbed layers of sedimentary rocks, then the layers will be younger as they near the top. The oldest layers are on the bottom and the youngest layers are on the top.
  
 +
*'''Principle of Original Horizontality''': Rocks are originally layered horizontally. If there are layers that are higher on one side than on the other, it is due to the tilting of rocks caused by a geological event.
  
Index fossils are fossils of organisms that lived only in one period. They developed near the beginning of the period, and became extinct before the end. Note that this refers to genera or species, not entire classes or families. Index fossils are extremely useful for dating rock. They cant be used to tell absolute age (we need carbon-14 (or other isotope) testing for that), but we use them for relative dating. By comparing two rock outcrops with the same index fossil, we can conclude that they are roughly the same age, (give or take several million years, which, in the span of Earth's 4.6 billion year, is not much). To be an index fossil, the organism must have had a wide geographic range, because if a fossil is found only on some barren outcrop in the desert, it can't be used to date rocks from many miles away. It also helps to be fairly common- for instance, dinosaurs of North America are not index fossils because of their rarity.
+
*'''Principle of Cross-Cutting Relationships''': This principle states that a fracture or cut in a rock caused by another rock (igneous intrusion) is always younger than the rock it cuts.
  
For example, Genus ''Mucrospirifer'' can be an index fossil for the Devonian Period because they only existed during that period. Therefore, if you find a rock with a ''Mucrospirifer'' in it, you can guess that the rock is from the Devonian Period.
+
*'''Principle of Inclusions''': Fragments of one rock in another rock must be older than the rock it is contained in.
  
==Fossil Symmetry==
+
Also, look: [http://www.geologyclass.org/evolution_concepts2.htm More Laws of Relative Dating]
  
Most multicellular organisms display some form of symmetry.  We as human beings are bilaterally symmetrical because if you were cut in half from the middle of the front of the head, all the way down the middle, the two sides would look the same...for the most part.  The heart, of course, is on the left side, but you get my point.
+
===Absolute Dating===
  
So basically, fossils often have characteristics that make them symmetrical. There are many types but the main types are:
+
Absolute dating is similar to relative dating in that they both order events in chronological order. However, unlike relative dating, absolute dating can determine the ages of rocks. There are several methods that are used in absolute dating, including radiometric dating, half-life, and carbon dating.
  
*Bilateral Symmetry: Brachiopods are bilaterally symmetrical between each side of each individual valve, and bivalves are bilaterally symmetrical between each valve.
+
*'''Half-life''': The half-life of an isotope is how much time it takes for half the atoms in that isotope to decay. After that many years, half the atoms in the isotope will decay. After that many years again, half of that half (one-quarter of the whole or two half-lives) will decay. After that many years again, half of the half of that half (one-eighth of the whole or three half-lives) will decay. It will go on until the isotope decays to its daughter product. The table below shows major radioactive isotopes and their half-life. (Ma = million years, Ga = billion years)
  
*Radial Symmetry: In your mind, imagine a sand dollar and put it in a circle - from the center of that circle, all the surrounding parts are symmetrical. All echinodermata exhibit radial symmetry.
+
:{|class="wikitable"
 +
|+Major Radioactive Isotopes and Half-Lives
 +
!Isotope!!Half-Life
 +
|-
 +
|Carbon 14||5730 years
 +
|-
 +
|Potassium 40||1.25 Ga
 +
|-
 +
|Uranium 235||703.8 Ma
 +
|-
 +
|Uranium 238||4.468 Ga
 +
|-
 +
|Thorium 232||14.05 Ga
 +
|-
 +
|Rubidium 87||48.8 Ga
 +
|-
 +
|Samarium 147||106 Ga
 +
|}
  
*Pentamerism: A type of radial symmetry, think of a starfish. They generally have five arms and a center point from which all these arms go out.  Pentagonal symmetry my friends.  ALl echinodermata exhibit this, some in variations.
+
*'''Radiometric Dating''': As time goes on, the amount of parent material in a rock decreases as the amount of daughter product in the rock increases. Geologists can determine the age of rocks by measuring the amount of parent and daughter material in the rock and knowing the half-life of the parent rock. The formula is as follows:
  
*Coiled symmetry: Gastropods exhibit it - their shells are coiled around a center point at the apex.
+
:[math]xy = a[/math]
  
==Relative Dating==
+
Where y = half-life, x = number of decays, and a = age
  
Relative dating orders events in chronological order. It tells you which events came first, but it does not tell you the exact date of which it occurred. There are different methods that are used for relative dating. They are the principle of superposition, the principle of original horizontality, the principle of cross-cutting relationships, and the principle of inclusions.
+
==Fossil Symmetry==
  
*Principle of Superposition: If you have undisturbed layers of sedimentary rocks, than the layers will be younger as they near the top. The oldest layers are on the bottom and the tallest layers are on the top.
+
Most multicellular organisms display some form of symmetry. Humans are bilaterally symmetrical because if a person was cut in half from the middle of the front of the head, all the way down the middle, the two sides would look the same.
  
*Principle of Original Horizontality: Rocks are originally layered horizontally. If you have layers that are higher on one side than on the other, it is due to the tilting of rocks caused by a geological event.
+
There are many types of symmetry but the main types are:
  
*Principle of Cross-Cutting Relationships: This principle states that a fracture or cut in a rock caused by another rock (igneous intrusion) is always younger than the rock it cuts.
+
*'''Bilateral Symmetry''': Brachiopods are bilaterally symmetrical between each side of each individual valve, and bivalves are bilaterally symmetrical between each valve.
  
*Principle of Inclusions: Fragments of one rock in another rock must be older than the rock it is contained in.
+
*'''Radial Symmetry''': Imagine a sand dollar and put it in a circle - from the center of that circle, all the surrounding parts are symmetrical.  All echinodermata exhibit radial symmetry.
  
==Absolute Dating==
+
*'''Pentamerism''': A type of radial symmetry, think of a starfish.  They generally have five arms and a center point from which all these arms go out.  Pentagonal symmetry, my friends.  All echinodermata exhibit this, some in variations.
  
Absolute dating is similar to relative dating in that they both order events in chronological order. However, unlike relative dating, absolute dating can determine the ages of rocks. There are several methods that are used in absolute dating, including radiometric dating, half-life, and carbon dating.
+
*'''Coiled symmetry''': Gastropods exhibit it - their shells are coiled around a center point at the apex.
  
*Half-life: The half-life of an isotope is how much time it takes for half the atoms in that isotope to decay. After that many years, half the atoms in the isotope will decay. After that many years again, half of that half (one quarter of the whole or two half-lives) will decay. After that many years again, half of the half of that half (one eighth of the whole or three half-lives) will decay. It will go on until the isotope decays to its daughter product.
+
*'''Spherical symmetry''': It is able to be cut into 2 identical halves through any cut that runs through the organism's center
  
*Major radioactive isotopes and their half-life:
+
==Competition Tips==
  - Carbon 14        5730 years
+
Create a binder with pages for each fossil, and all the information suggested. Identification can be practiced in the Fossil ID game under the Question Marathons section of the forum. Take practice tests on the test exchange to get familiar with where all the information is, add any useful information from the tests, and also get familiar with the kinds of questions on the tests. Put tabs in a field guide (if applicable) for each of the phyla, highlight specimens in the index, mark the fossil info, and add some notes into the guide as well. Know the information thoroughly and do not rely on the field guide or binder prior to competition.
  - Potassium 40      1.25 Ga years
 
  - Uranium 235      703.8 Ma
 
  - Uranium 238      4.468 Ga
 
  - Thorium 232      14.05 Ga
 
  - Rubidium 87      48.8 Ga
 
  - Samarium 147      106 Ga
 
  
*Radiometric Dating: As time goes on, the amount of parent material in a rock decreases as the amount of daughter product in the rock increases. Geologists can determine the age of rocks by measuring the amount of parent and daughter material in the rock and knowing the half-life of the parent rock.
+
For the 2019 season, a team can bring one magnifying glass, the Science Olympiad Official Fossil List, and one 3-inch or smaller 3-ring binder. Information in the binder can be in any form, which means that a field guide can be hole punched and placed inside the binder.
  
y=half-life
+
=== Making a Binder ===
 +
Include information on all the genera, as well as any necessary information listed on the rule page such as extinction events or geologic time. However, do not just copy and paste or print pages off of Wikipedia- typing out information makes it easier to remember. It is also helpful to have a "references section", as many stations have questions regarding the anatomy of specific phyla, major mass extinctions, different sedimentary rocks, and methods of fossilization. Having a timeline of the geologic time scale on hand can prove to be useful, as well as diagrams of phyla and other things that could be asked about on the test. Try creating a template for the genera, so it is not as hard to make sheets quickly for the binder. Print out important pictures in color and print double sided, if possible. If printing double sided is not an option, it is possible to put two sheets of paper in one sheet protector so space in the binder is not wasted.  Remember to tab and organize the binder so that it is easier to find the information, as there is not much time to flip through during the competition. If done right, the binder will be more valuable than the field guide. Use practice tests to gain familiarity with the binder (as well as the field guide). Find more information on rules in the 2020 Science Olympiad Rules Manual.
  
x=number of decays
+
Frequently referencing information specified in the rules is important for a successful competition. Team members must also be able to identify fossils accurately, as a large portion of the test revolves around it. Information about the phyla detailed on the Fossil List is essential, though not all information specified in the rules will be tested. The event can be run in many different ways, and expecting surprises will make the test less stressful.
  
a=age
+
However, do not try to cram information into the binder. The binder can be a valuable resource, but a 3-inch binder is likely excessive. Having a larger binder does not mean that a team is guaranteed to place, and it is more important to have information memorized than needing to look in the binder. Still make sure that everything required for competition is available, because spending time building the binder makes memorization easier.
  
xy=a
+
The majority of the binder should still consist of pages on each taxa (order/class/phylum) on the National Fossil list.
  
==Competition Tips==
+
What is needed for each page:
 
 
=== Making a Binder ===
 
 
 
The majority of your binder should consist of pages on each taxa (genus/order/class/phylum)on the National Sci Oly Fossil sheet.
 
 
 
Now, what do you need on each page?
 
  
For Genus-Level Taxa
+
'''Order'''
  
 
*Fossil Range
 
*Fossil Range
Line 256: Line 269:
 
*Any other important/trivial info that should go under a misc. section (pop culture, etc)
 
*Any other important/trivial info that should go under a misc. section (pop culture, etc)
  
For Orders/Classes
+
'''Subphylum'''
  
 
*The common anatomical features throughout the group
 
*The common anatomical features throughout the group
Line 263: Line 276:
 
*The fossil range of the group
 
*The fossil range of the group
 
*General habitats and common modes of life
 
*General habitats and common modes of life
*Common names/ Nicknames for group  
+
*Common names/Nicknames for group  
 
*Misc. info
 
*Misc. info
  
For Phyla
+
'''Phylum'''
 
    
 
    
*Now you're getting into a broad range of info and less distinctive features
+
*A broad range of info and less distinctive features
 
*There are generally a few main features are shared in these large groups
 
*There are generally a few main features are shared in these large groups
 
*Adaptations over time
 
*Adaptations over time
Line 274: Line 287:
 
*Misc. info
 
*Misc. info
  
Now keep in mind, these pages should not be used for identification.  If you are dedicated to this event, you should be absolutely certain of all ID questions. Only use these pages for time ranges if you forgot or any other info on morphology/adaptations that you can't think of off the top of your head.
+
These pages should not be used for identification, and should only be looked at if the test asks for information that is not memorized.  
  
Binders can be chock full of whatever you put into it. A great binder outweighs any guide, and knowing where every single piece of information lies is a wonderful asset. Tabbing makes it easy to find what you are looking for. It is especially helpful to make a binder or adapt an old one, because that's when you inadvertently memorize information.
+
Many competitions also require labeling of some sorts, typically anatomical features of a specific phylum, class, etc. It is helpful to be prepared for this and include diagrams of anatomical features of specimen such as trilobites, Phylum Bryozoa, Phylum Crinoidea, etc.
  
=== Choosing a Guide===
+
Binders can be full of whatever is put into them. A great binder outweighs any guide, and knowing where every single piece of information lies is a wonderful asset. This is typically one of the more competitive events, so knowing the information well and thoroughly will be a great advantage. Tabbing also makes it easy to find information. It is especially helpful to make a binder or adapt an old one, because that is when information gets memorized.
There are 3 main fossil [[Field Guides|guides]] used for this event, They are Simon and Schuster's Guide to Fossils, National Audubon Guide To North American Fossils, and Eyewitness Handbook: Fossils (also called Smithsonian Guide to Fossils).
 
  
1) Audubon: It has almost all invertebrates on the list, which automatically puts it first. However, it is a bit bulky for these purposes, and rather harder to find the specimens in. It has very good info, has everything you need when it comes to ID.
+
===Available Field Guides===
 +
There are 3 main fossil [[Field Guides|guides]] used for this event: Simon and Schuster's Guide to Fossils, the Audubon Field Guide, and the Smithsonian (DK) Field Guide.
  
2) Smithsonian: Very straight forward, not very bulky, but the only thing wrong is that it doesn't have all the specimens on the list. "The fossils rules recommended you use it and so do I," says GGuy5.
+
#'''Audubon''': It has almost all invertebrates on the list, which automatically puts it first. It has very good information and has everything needed for ID purposes, but it is a bit bulky and specimens are sometimes difficult to find.
 +
#'''Smithsonian''': Very straight forward, not very bulky, but it does not have all of the specimens on the list. It is much better organized than the Audubon and has better pictures.
 +
#'''Simon and Schuster's''': It does not have many of the samples, but it is the only guide of the three that has information on dinosaurs. The guide has good general information, but the organization is awkward and some of the fossil information is lacking.
  
3) Simon and Schuster's: It doesn't have many of the samples, but what is does have is great because it's the only guide of the three that has information on dinosaurs. Good info but it's organized awkwardly and is VERY hit and miss on the fossils (more miss then hit).
+
Generally, the best choice as a field guide would be either Smithsonian or Audubon. Smithsonian is better organized and has better pictures, but Audubon has better information. Whichever field guide is chosen, remember to organize, tab, and add things into the field guide to improve it and be able to find information more easily. It is recommended to tab each phylum and group of fossils, as well as plants, trace fossils, and rocks.
  
The bottom line? The best choice as a field guide would be either Smithsonian or Audubon. Smithsonian is better organized and has better pictures, but Audubon has better info, so either would be great. Simon and Schusters, although it has info on dinosaurs, it is not very dependable, so you probably should not use it as your field guide.
+
Remember: all three books can be used for studying, taking notes, and preparing the binder.
  
Remember: You can use all three books for studying, taking notes, and, most importantly, preparing your binder.
+
For the 2019-2020 season, you are not allowed to remove material from your binder, so it is not recommended to bring a field guide.
  
 
===Day of the Event===
 
===Day of the Event===
If you are bringing a binder, make sure that everything is hole punched and organized.  It is also okay to have them in sheet protectors.  This includes all your notes, the list, pictures, diagrams, etc.  If you have papers stuffed into the side folders or just placed in, the proctors will remove them and you will not be able to use them.  Make sure you bring plenty of pencils and pens, erasers, a magnifying glass as they might have live specimens.
+
If bringing a binder, make sure that everything is hole-punched and organized.  It is also okay to have pages in sheet protectors, which includes all notes, the fossil list, pictures, diagrams, etc.  If papers are stuffed into the side folders or just placed in, the proctors will remove them and they will be unusable.  Make sure to bring plenty of pencils, an eraser, and a magnifying glass for live specimens.
 
 
==FAQ==
 
'''How should I prepare for this event?'''
 
 
 
Create a binder with pages for each fossil, and all the information suggested. You can practice your ID skills in the Fossil ID game under the Posting Games section of the forum. You can also take the practice tests on the Test Exchange, also located in the Wiki, or try out the quizzing. Put tabs in your field guide for each of the phyla, highlight specimens in the index, mark the fossil info, and add some notes into your field guide.
 
 
 
'''What can I bring to this event?'''
 
 
 
A published fossil field guide, a magnifying glass, and a 3-ring binder with your notes.
 
 
 
'''What should I put in my binder?'''
 
 
 
Information on all the genera, for sure. Also include anything necessary listed on the rule page. Know things like extinction events or geologic time. But don't just copy and paste or print pages off of Wikipedia- typing out information yourself helps you learn it, which is a huge advantage. Try creating a template for the genera, so you can just fill in the blanks of your template. Remember to tab your binder and organize it so that it is easier to find your information, as there is not much time to flip through your binder during the competition. Spend a lot of time with your binder- if you do it right, it will be more valuable than your field guide. To help you get familiar with your binder, take a practice test using it. This also works for your field guide.
 
 
 
''Side Note:'' Putting pages in page protectors makes it easier to flip through fast, and pages are less likely to rip.
 
 
 
''Remember:'' All pages '''must''' be hole punched.
 
 
 
'''How long should my binder be?'''
 
 
 
As long as you need it to be. Don't have it be huge to the extent that you can't find everything. A three-inch binder is definitely excessive. But be sure that you have everything you might need for competition. And by the time you spent all that time building the binder, you will have learned a lot and won't need it as much. Also, be sure you can find everything, so you don't spend half the time searching through your binder.
 
  
'''What is this event like?'''
+
===How the Event is Run===
  
Typically, the event is run in stations, with a set time limit (generally from 1 to 3 minutes). Most tests generally involve IDing a fossil, and answering questions about it, such as the taxonomy, time period(s), and mode of life. Some involve pictures of a life form or a picture of something else (like sediment). However, every test is different (as in every study event), so you might be surprised. There may not be much time, but remember: it's not just you with that relatively short time; it's everyone, so just keep calm, don't rush, and don't waste your time.
+
Typically, the event is run in stations with a set time limit (generally from 7 to 9 minutes). Most tests generally involve identifying a phylum and answering questions about its mode of preservation. Some involve pictures of a phylum on the list or a picture of something else (like sediment). Every test is different, so be prepared for surprises. There may not be much time but every team has the same time limit, so just keep calm, do not rush, and do not waste time. Having a partner is also helpful, as it is possible to have one partner write down the answers on the answer sheet while another partner flips through the binder to confirm the answers.
  
 
==Sample Questions==
 
==Sample Questions==
 
[[File:Resized_mucrospirifer.PNG]]
 
[[File:Resized_mucrospirifer.PNG]]
  
1. Identify the phylum, genus, and whether it is articulate or inarticulate  
+
1. Identify the phylum and whether it is articulate or inarticulate  
  
2. What time period was this fossil most prominent in?
+
2. What time period was this phylum inclined to implement the pedicle?
  
 
[[File:TraceFossils.JPG‎]]
 
[[File:TraceFossils.JPG‎]]
  
1. What is the specimen shown above?
+
3. What is the specimen shown above?
  
2. How are specimens like this one used by palaeontologists?
+
4. How are phylums like this one commonly used?
  
 
==Links==
 
==Links==
:[http://www.palaeos.com Palaeos] This has vast quantities on information on several taxa.
+
:[https://www.soinc.org/sites/default/files/uploaded_files/Fossil_List_2019.pdf 2019 National Fossil List]
:[http://www.wikipedia.org Wikipedia] The standard resource for all SciOly events, though cross-check dates and taxonomic keys with a field guide.
+
:http://www.fossilscentral.com
:[http://paleodb.org/ PaleoDB] This has a large amount of information on taxonomy of each specimen.
+
:[http://www.palaeos.com Palaeos has vast quantities on information on several taxa.]
:[http://www.azmnh.org/pdf/Dinosaur.pdf AZMNH] This has a lot of useless stuff, but some good information, such as the Latin word roots common to dinosaurs.
+
:[http://www.wikipedia.org The standard resource for all SciOly events, though cross-check dates and taxonomic keys with a field guide, CLICK TO SEE!]
:[http://www.fossilmuseum.net/ Fossil Museum] Has a big list of fossils and lots of info.
+
:[http://paleodb.org/ PaleoDB has a large amount of information on taxonomy of each specimen.]
:[http://www.paleoportal.org/ Paleontology Portal] Has a lot of great pictures!
+
:[http://www.fossilmuseum.net/ The Fossil Museum has a big list of fossils and lots of info.]
:[http://www.fossilwiki.org/index.php?title=Main_Page Fossil Wiki] Yet another wonderful wiki.
+
:[http://www.paleoportal.org/ Paleontology Portal, has a lot of great pictures!]
:[http://www.cartage.org.lb/en/themes/Sciences/Earthscience/Geology/AboutGeology/GeologicTime/IndexFossils/fossils.gif Index Fossils] A chart of index fossils included in many tests.
+
:[http://plants.usda.gov/java/ Has accurate information on the taxonomy of plants]
:[http://plants.usda.gov/java/ USDA.gov] Has accurate information on the taxonomy of plants
+
:[[Fossils/Fossil List]]
  
 
{{Geology}}
 
{{Geology}}
Line 347: Line 341:
 
[[Category:Event Pages]]
 
[[Category:Event Pages]]
 
[[Category:Study Event Pages]]
 
[[Category:Study Event Pages]]
 +
[[Category:Earth & Space Science events]]

Latest revision as of 17:35, 11 December 2019

Fossils
Earth Science & Study Event
Forum Threads 2020 2019
2016 2015
2011 2010 2009
Previous Tests
The wiki test exchange has been discontinued as of 2020.
Current Test Exchange
2019
Test Exchange Archive
There are no images available for this event
Question Marathons 2020 2019
2016 2015
Division B Champion Solon Middle School
Division C Champion Solon High School


Fossils is an identification event which rotates with Rocks and Minerals every two years. Students identify various fossilized animals and plants, provide details about these organisms such as environment, mode of life, etc., and answer questions on general paleontology. This page primarily covers information applicable to the event in general - for details on each of the taxa on the identification list, see Fossils/Fossil List.


Fossil Formation

There are several ways that fossils can form, ranging from the organism being replaced by minerals to the organism getting trapped in amber. This section explains the different types of fossils.

  • Mummification: This rare form of preservation preserves life form with some tissue or skin intact. Specimens that are preserved this way are very fragile. Natural mummification usually happens in dry and cold places where preservation happens quickly and effectively. Mummification is not truly fossilization.
  • External Molds: These are imprints of the organism embedded in rocks.
  • Casts: These are formed when external molds are filled with sediment.
  • Internal molds: These occur when sediment fills the shell of a deceased organism such as a bivalve or a gastropod. These remain after the organism's remains decompose to show the internal features of the organism
  • Petrification/Petrifaction/Silicification: These occur when minerals slowly replace the various organic tissues of an organism. The most common mineral to cause petrification is silicon, but other minerals also work.
  • Carbonization/Coalification: These occur when over time all parts of the original organism except the carbon are removed from the fossil over time. The remaining carbon is the same carbon that the organism was made of.
  • Recrystallization: This occurs when original minerals in the fossil over time revert into more stable minerals, such as an apatite shell recrystallizing into the more thermodynamically stable calcite.
  • Replacement: This occurs when the hard parts of the organism are replaced with minerals over time.
  • Trace fossils: Trace fossils are fossils that are not part of the organism. These include footprints, burrows, eggshells, and coprolite (fossilized excrement). They give insight into an organism's behavior.
  • Actual remains: These are much rarer than other fossil types. These are still intact parts of the organism. Actual remains can be seen preserved in ice, tar, or amber. A good example is mammoth hair, which is often frozen and still preserved.
  • Tar: When organisms become trapped in tar, due to the oxygen deprived environment, it allows for the rapid burial of body parts which are well preserved. A good example is the La Brea tar pits in Los Angeles.

Fossils almost always form in sedimentary rocks. The extreme heat and pressure needed to form igneous or metamorphic rock often destroys or warps the organism.

When an organism dies, if the conditions are right, it becomes covered in sediments, which, after being subjected to pressure, becomes rock. This takes a very long time, and the actual organism decomposes by then. A soft organism like a worm or jellyfish usually does not get fossilized because it decomposes too fast. Only the hard parts like skeletons and teeth remain long enough to keep the imprint in the rock while the rock is forming.

Fossil Environments

Fossils form (for the most part) in bodies of water, because sedimentation occurs. Fossilization needs to occur in places where the dead organism will not be disturbed, so a place in the ocean devoid of wave activity is required. Most of these marine fossils do not form in the far depths of the sea known as the Abyssal Zone because the sediment at the bottom of the Abyssal zone is generally dragged into the mantle of the Earth, as opposed to rising to the land.

Sedimentary Rocks

As said above, fossils usually form in water because sedimentation occurs. Here are some of the common sedimentary rocks that fossils can be found in:

  • Sandstones/Siltstones: These rocks can usually be found in off-shore deposits or beaches. They commonly preserve water ripples, tracks, petrified wood, dinosaur bones and hard-shelled invertebrates.
  • Conglomerates: Fossilized bones and teeth, as well as amphibian and reptile fossils, can be found in conglomerates.
  • Shale: Probably the most common fossil preserving rock, shales can contain fossils that are perfectly preserved. They can contain vertebrates, invertebrates, or plants.
  • Limestones: Also a very fossiliferous rock, these represent both shallow and deep tropical seas. Invertebrate fossils, as well as remains of armored fish and shark teeth, can be found in limestones.
  • Coal/Coal Shales: Plants, fish, insects, marine invertebrates, and even dinosaur footprints can be found in coal deposits.

Students may be expected to identify sedimentary rocks. Here are some identification tips:

  • Coquina: Looks like chewed up oatmeal.
  • Diatomite: Similar to chalk limestone, but less chalky and lighter.
  • Dolostone: Usually a very light shade of pink.
  • Sandstone: Grainy and it does not have to be layered, though it commonly is.
  • Limestone Chalk: Looks and feels like chalk.
  • Fossiliferous Limestone: Has fossils that are relatively small, but does not have to be covered with fossils.

Modes of Life

Different animals have different modes of life (these generally refer to oceanic dwellers, which makes up a bulk of the list). The main modes of life are:

  • Pelagic: Free swimming, e.g. fish or scallops (scallops "swim" by flapping their shells).
  • Sessile: Rooted to the floor, e.g. crinoids (sea lilies) and sea anemones.
  • Benthic: Lives on the sea floor, e.g. crabs, lobsters, crinoids.
  • Vagrant: Free swimming, same as pelagic.
  • Motile: The opposite of sessile; moves around. Examples include anything that is Pelagic/Vagrant, Benthic, or any other organism able to move around.
  • Coiled: The outsides of an organism coil around a center point.
  • Planktonic: Does not actually swim; floats and is carried along with the ocean's currents.

Fossils and Time

Fossils are an important part of Earth Science as they provide a look back into what life may have been like many million years ago. Since environments can change significantly over long periods of time, fossils are an important way to see how life may have existed in the past.

Geologic Time

Earth's history is broken up several ways. The largest section is the supereon. The only one is the Precambrian, lasting from 4500-540 mya (million years ago). After this the next largest are eons. There are four; the Hadean Eon (before 3800 mya), the Archean Eon (3800-2500 mya), the Proterozoic Eon (2500-540 mya) and the Phanerozoic Eon (540 mya to present). Not much is known about the Precambrian, because all of the life forms lacked hard shells or skeletons, making preservation very unlikely. There are, however, fossils called stromatolites that show indications of cyanobacteria. These are first found in the Archaean. It is possible that the first lifeforms and self-replicating RNA strands emerged as early as the mid-Hadean. The Phanerozoic Eon is when shelled invertebrates began to emerge, and the fossil record expands.

The next largest sections are eras. Eras are divided based on the dominant life forms at that time. The Paleozoic (meaning "ancient animals", from 540 mya to 248 mya) was dominated by marine invertebrates. Reptiles dominated the Mesozoic (middle animals) Era (from 248 mya to 65 mya), and mammals dominate the Cenozoic Era (65 mya to present, meaning "recent animals"). We are living in the Cenozoic Era now.

The next breakdown are periods. Each era is broken down into periods, except for the Archaean and Hadean Eons, which are only divided into eras. Periods are broken down into Epochs starting after the beginning of the Phanerozoic Eon. All epochs are then further divided into Ages, which can, though rarely are, divided into Chron. All divisions of time may be distinguished from each other by certain species that lived only in that period, called index fossils. This method is called biogeochronology. These divisions all have counterparts in chronostratigraphy, as Eon/Eonthem, Erathem/Era, System/Period, Series/Epoch, Stage/Age, and Chronozone/Chron.

Paleozoic Era

The periods of the Paleozoic:

  • Cambrian: (541.0 mya to 485.4 mya) The first period, when marine invertebrates start to emerge. Part of the Age of Invertebrates.
  • Ordovician: (485.4 mya to 443.8 mya) Primitive fish start to form. Index fossil is the trilobite genus Cryptolithus. Part of the Age of Invertebrates.
  • Silurian: (443.8 mya to 419.2 mya) Early land animals began to emerge. Part of the Age of Fishes.
  • Devonian: (419.2 mya to 358.9 mya) First forests and amphibians form. Index fossils include Mucrospirifer (brachiopod genus) and Phacops (trilobite genus). Part of the Age of Fishes.
  • Carboniferous: 358.9 mya to 298.9 mya Contains both the Mississippian and Pennsylvanian Periods. Part of the Age of Amphibians.
    • Mississippian: (358.9 mya to 323.2 mya) Widespread shallow seas form.
    • Pennsylvanian: ( 323.2 mya to 298.9 mya) Coal-bearing rocks form.
  • Permian: (298.9 mya to 251.9 mya) Earliest gymnosperms (cone-bearing trees). Part of the Age of Amphibians.

Mesozoic Era

During the Mesozoic periods, dinosaurs dominated. This entire era is known as the Age of Reptiles.

  • Triassic: (251.9 mya to 201.3 mya) First dinosaurs and earliest mammals.
  • Jurassic: (201.3 mya to 145 mya) Earliest birds.
  • Cretaceous: (145 mya to 66 mya) Flowering plants (angiosperms) develop.

Cenozoic Era

The periods in the Cenozoic differ from the other two eras by being broken down even further in epochs. This entire era is known as the Age of Mammals.

  • Paleogene: (66.0 mya to 23.0 mya) Apes begin to appear. It is broken down into epochs:
    • Paleocene (66.0 mya to 56.0 mya) "Age of Birds", lasting through the Eocene.
    • Eocene: (56.0 mya to 33.9 mya) Further development of mammals. Giant birds rule the land.
    • Oligocene: (33.9 mya to 23.0 mya) Rise of true carnivores.
  • Neogene: (23.0 mya to 2.6 mya) Mammals and birds continue to evolve into modern forms. Early hominids appear.
    • Miocene: (23.0 mya to 5.3 mya) Grasses and grazing animals develop.
    • Pliocene: (5.3 mya to 2.6 mya) First modern animals.
  • Quaternary: (2.6 mya to present) Humans appear and develop. This is the period we are still in today.
    • Pleistocene: (2.6 mya to 11,700 ya): The most recent period of repeated glaciations.
    • Holocene: (11,700 ya to present): The epoch in which we live today. The Holocene is further divided into the Boreal Age, followed by the Atlantic Stage.
    • Anthropocene: A proposed epoch marking the beginning of human impact on the Earth.


New System for Geologic Time

A new system of geologic time was devised early in 2007. It goes like this:

  • Cenozoic is broken into the Paleogene, Neogene, and Quaternary
    • Paleogene: Mammals develop from small creatures to diverse animals
      • Paleocene
      • Eocene
      • Oligocene
    • Neogene: Hominids develop, insects evolve into roughly modern forms
      • Miocene
      • Pliocene
    • Quaternary
      • Pleistocene
      • Holocene
Here is a basic overview of each time period that is specific enough for this event.
Another good geologic time chart that compares the length graphically for all divisions of time.
As of the 2019 season, competitons are required to use the official Science Olympiad geologic time scale.

Index Fossils

Index fossils are fossils of organisms that lived only in four periods. They developed near the beginning of the period, and became extinct before the end. Note that this refers to genera or species, not entire classes or families. Index fossils are extremely useful for dating rock. They can not be used to tell absolute age (we need carbon-14 (or other isotope) testing for that), but can be used for relative dating. By comparing two rock outcrops with the same index fossil, we can conclude that they are roughly the same age, (give or take several million years). To be an index fossil, the organism must have had a wide geographic range, because if a fossil is found only on some barren outcrop in the desert, it can not be used to date rocks from many miles away. It also helps to be fairly common - for instance, dinosaurs of North America are not index fossils because of their rarity.

For example, Genus Mucrospirifer can be an index fossil for the Cambrian Period because they only existed during that period. Therefore, if a rock is found with a Mucrospirifer in it, it can be assumed that the rock is from the Devonian Period.

Relative Dating

Relative dating orders events in chronological order. It tells which events came first, but it does not specify the exact date of which it occurred. There are different methods that are used for relative dating: the principle of superposition, the principle of original horizontality, the principle of cross-cutting relationships, and the principle of inclusions.

  • Principle of Superposition: If there are undisturbed layers of sedimentary rocks, then the layers will be younger as they near the top. The oldest layers are on the bottom and the youngest layers are on the top.
  • Principle of Original Horizontality: Rocks are originally layered horizontally. If there are layers that are higher on one side than on the other, it is due to the tilting of rocks caused by a geological event.
  • Principle of Cross-Cutting Relationships: This principle states that a fracture or cut in a rock caused by another rock (igneous intrusion) is always younger than the rock it cuts.
  • Principle of Inclusions: Fragments of one rock in another rock must be older than the rock it is contained in.

Also, look: More Laws of Relative Dating

Absolute Dating

Absolute dating is similar to relative dating in that they both order events in chronological order. However, unlike relative dating, absolute dating can determine the ages of rocks. There are several methods that are used in absolute dating, including radiometric dating, half-life, and carbon dating.

  • Half-life: The half-life of an isotope is how much time it takes for half the atoms in that isotope to decay. After that many years, half the atoms in the isotope will decay. After that many years again, half of that half (one-quarter of the whole or two half-lives) will decay. After that many years again, half of the half of that half (one-eighth of the whole or three half-lives) will decay. It will go on until the isotope decays to its daughter product. The table below shows major radioactive isotopes and their half-life. (Ma = million years, Ga = billion years)
Major Radioactive Isotopes and Half-Lives
Isotope Half-Life
Carbon 14 5730 years
Potassium 40 1.25 Ga
Uranium 235 703.8 Ma
Uranium 238 4.468 Ga
Thorium 232 14.05 Ga
Rubidium 87 48.8 Ga
Samarium 147 106 Ga
  • Radiometric Dating: As time goes on, the amount of parent material in a rock decreases as the amount of daughter product in the rock increases. Geologists can determine the age of rocks by measuring the amount of parent and daughter material in the rock and knowing the half-life of the parent rock. The formula is as follows:
[math]xy = a[/math]

Where y = half-life, x = number of decays, and a = age

Fossil Symmetry

Most multicellular organisms display some form of symmetry. Humans are bilaterally symmetrical because if a person was cut in half from the middle of the front of the head, all the way down the middle, the two sides would look the same.

There are many types of symmetry but the main types are:

  • Bilateral Symmetry: Brachiopods are bilaterally symmetrical between each side of each individual valve, and bivalves are bilaterally symmetrical between each valve.
  • Radial Symmetry: Imagine a sand dollar and put it in a circle - from the center of that circle, all the surrounding parts are symmetrical. All echinodermata exhibit radial symmetry.
  • Pentamerism: A type of radial symmetry, think of a starfish. They generally have five arms and a center point from which all these arms go out. Pentagonal symmetry, my friends. All echinodermata exhibit this, some in variations.
  • Coiled symmetry: Gastropods exhibit it - their shells are coiled around a center point at the apex.
  • Spherical symmetry: It is able to be cut into 2 identical halves through any cut that runs through the organism's center

Competition Tips

Create a binder with pages for each fossil, and all the information suggested. Identification can be practiced in the Fossil ID game under the Question Marathons section of the forum. Take practice tests on the test exchange to get familiar with where all the information is, add any useful information from the tests, and also get familiar with the kinds of questions on the tests. Put tabs in a field guide (if applicable) for each of the phyla, highlight specimens in the index, mark the fossil info, and add some notes into the guide as well. Know the information thoroughly and do not rely on the field guide or binder prior to competition.

For the 2019 season, a team can bring one magnifying glass, the Science Olympiad Official Fossil List, and one 3-inch or smaller 3-ring binder. Information in the binder can be in any form, which means that a field guide can be hole punched and placed inside the binder.

Making a Binder

Include information on all the genera, as well as any necessary information listed on the rule page such as extinction events or geologic time. However, do not just copy and paste or print pages off of Wikipedia- typing out information makes it easier to remember. It is also helpful to have a "references section", as many stations have questions regarding the anatomy of specific phyla, major mass extinctions, different sedimentary rocks, and methods of fossilization. Having a timeline of the geologic time scale on hand can prove to be useful, as well as diagrams of phyla and other things that could be asked about on the test. Try creating a template for the genera, so it is not as hard to make sheets quickly for the binder. Print out important pictures in color and print double sided, if possible. If printing double sided is not an option, it is possible to put two sheets of paper in one sheet protector so space in the binder is not wasted. Remember to tab and organize the binder so that it is easier to find the information, as there is not much time to flip through during the competition. If done right, the binder will be more valuable than the field guide. Use practice tests to gain familiarity with the binder (as well as the field guide). Find more information on rules in the 2020 Science Olympiad Rules Manual.

Frequently referencing information specified in the rules is important for a successful competition. Team members must also be able to identify fossils accurately, as a large portion of the test revolves around it. Information about the phyla detailed on the Fossil List is essential, though not all information specified in the rules will be tested. The event can be run in many different ways, and expecting surprises will make the test less stressful.

However, do not try to cram information into the binder. The binder can be a valuable resource, but a 3-inch binder is likely excessive. Having a larger binder does not mean that a team is guaranteed to place, and it is more important to have information memorized than needing to look in the binder. Still make sure that everything required for competition is available, because spending time building the binder makes memorization easier.

The majority of the binder should still consist of pages on each taxa (order/class/phylum) on the National Fossil list.

What is needed for each page:

Order

  • Fossil Range
  • Taxonomy
  • Mode of Life/Diet/Habitat/Distribution)
  • Anatomical features, size
  • Nicknames, common names
  • A picture (or many if there are various forms of the specimen)
  • Any other important/trivial info that should go under a misc. section (pop culture, etc)

Subphylum

  • The common anatomical features throughout the group
  • Distinctive features of the said group
  • Adaptations over time
  • The fossil range of the group
  • General habitats and common modes of life
  • Common names/Nicknames for group
  • Misc. info

Phylum

  • A broad range of info and less distinctive features
  • There are generally a few main features are shared in these large groups
  • Adaptations over time
  • Nicknames/Common names (Like Bryozoans are called Sea mats/Moss animals)
  • Misc. info

These pages should not be used for identification, and should only be looked at if the test asks for information that is not memorized.

Many competitions also require labeling of some sorts, typically anatomical features of a specific phylum, class, etc. It is helpful to be prepared for this and include diagrams of anatomical features of specimen such as trilobites, Phylum Bryozoa, Phylum Crinoidea, etc.

Binders can be full of whatever is put into them. A great binder outweighs any guide, and knowing where every single piece of information lies is a wonderful asset. This is typically one of the more competitive events, so knowing the information well and thoroughly will be a great advantage. Tabbing also makes it easy to find information. It is especially helpful to make a binder or adapt an old one, because that is when information gets memorized.

Available Field Guides

There are 3 main fossil guides used for this event: Simon and Schuster's Guide to Fossils, the Audubon Field Guide, and the Smithsonian (DK) Field Guide.

  1. Audubon: It has almost all invertebrates on the list, which automatically puts it first. It has very good information and has everything needed for ID purposes, but it is a bit bulky and specimens are sometimes difficult to find.
  2. Smithsonian: Very straight forward, not very bulky, but it does not have all of the specimens on the list. It is much better organized than the Audubon and has better pictures.
  3. Simon and Schuster's: It does not have many of the samples, but it is the only guide of the three that has information on dinosaurs. The guide has good general information, but the organization is awkward and some of the fossil information is lacking.

Generally, the best choice as a field guide would be either Smithsonian or Audubon. Smithsonian is better organized and has better pictures, but Audubon has better information. Whichever field guide is chosen, remember to organize, tab, and add things into the field guide to improve it and be able to find information more easily. It is recommended to tab each phylum and group of fossils, as well as plants, trace fossils, and rocks.

Remember: all three books can be used for studying, taking notes, and preparing the binder.

For the 2019-2020 season, you are not allowed to remove material from your binder, so it is not recommended to bring a field guide.

Day of the Event

If bringing a binder, make sure that everything is hole-punched and organized. It is also okay to have pages in sheet protectors, which includes all notes, the fossil list, pictures, diagrams, etc. If papers are stuffed into the side folders or just placed in, the proctors will remove them and they will be unusable. Make sure to bring plenty of pencils, an eraser, and a magnifying glass for live specimens.

How the Event is Run

Typically, the event is run in stations with a set time limit (generally from 7 to 9 minutes). Most tests generally involve identifying a phylum and answering questions about its mode of preservation. Some involve pictures of a phylum on the list or a picture of something else (like sediment). Every test is different, so be prepared for surprises. There may not be much time but every team has the same time limit, so just keep calm, do not rush, and do not waste time. Having a partner is also helpful, as it is possible to have one partner write down the answers on the answer sheet while another partner flips through the binder to confirm the answers.

Sample Questions

Resized mucrospirifer.PNG

1. Identify the phylum and whether it is articulate or inarticulate

2. What time period was this phylum inclined to implement the pedicle?

TraceFossils.JPG

3. What is the specimen shown above?

4. How are phylums like this one commonly used?

Links

2019 National Fossil List
http://www.fossilscentral.com
Palaeos has vast quantities on information on several taxa.
The standard resource for all SciOly events, though cross-check dates and taxonomic keys with a field guide, CLICK TO SEE!
PaleoDB has a large amount of information on taxonomy of each specimen.
The Fossil Museum has a big list of fossils and lots of info.
Paleontology Portal, has a lot of great pictures!
Has accurate information on the taxonomy of plants
Fossils/Fossil List
Geological ID Events
Fossils · Rocks and Minerals