Difference between revisions of "Protein Modeling/Apoptosis"

From Wiki - Scioly.org
Jump to navigation Jump to search
Line 8: Line 8:
 
Caspase-3 is the pre-build model for 2012, based on file [http://www.pdb.org/pdb/explore/explore.do?structureId=1i3o 1I3O.pdb].
 
Caspase-3 is the pre-build model for 2012, based on file [http://www.pdb.org/pdb/explore/explore.do?structureId=1i3o 1I3O.pdb].
  
Caspase-3 is a '''c'''ysteine-'''asp'''artic acid prote'''ase''', known as an "executioner" protein because of the direct role it plays in dismantling other cell proteins during apoptosis. It is inhibited by XIAP, and it acts upon PARP, among other proteins.
+
Caspase-3 is a '''c'''ysteine-'''asp'''artic acid prote'''ase''', known as an "executioner" protein because of the direct role it plays in dismantling other cell proteins during apoptosis. It is inhibited by XIAP, and it acts upon PARP, among other proteins. In particular, its substrates include structural proteins such as spectrin, actin, and gelsolin, as well as endonuclease inhibitors (inhibitors of proteins that cleave DNA) such as ICAD/DFF45.
  
Its active site contains a cysteine which directly attacks the substrate, cleaving the target protein at the amino side of an aspartic acid residue; hence the name "cysteine-aspartic acid protease".
+
The active form of caspase-3 is created when caspase-8 or caspase-9 cleaves procaspase-3, an inactive precursor, into a 17 kDa and a 12 kDa subunit (chains A and B in [http://www.pdb.org/pdb/explore/explore.do?structureId=1i3o 1I3O.pdb], respectively).
 +
 
 +
Its active site contains a cysteine which directly attacks the substrate, cleaving the target protein at an aspartic acid residue; hence the name "cysteine-aspartic acid protease". Caspase-3 targets the specific substrate sequence DXXD, meaning that it requires an aspartic acid at the P1 and P4 positions relative to the cleavage site (which would be to the right of the second D).
 +
 
 +
When functional caspase-3 is not present, cells do not exhibit the traditional hallmarks of apoptosis – DNA fragmentation, chromatin condensation, and membrane blebbing.
  
 
===Diablo===
 
===Diablo===

Revision as of 23:53, 6 March 2012

The 2012 topic of Protein Modeling deals with cell apoptosis. The pre-build model is of caspase-3.

See the CBM webpage for more details.

Proteins

Caspase-3

Caspase-3 is the pre-build model for 2012, based on file 1I3O.pdb.

Caspase-3 is a cysteine-aspartic acid protease, known as an "executioner" protein because of the direct role it plays in dismantling other cell proteins during apoptosis. It is inhibited by XIAP, and it acts upon PARP, among other proteins. In particular, its substrates include structural proteins such as spectrin, actin, and gelsolin, as well as endonuclease inhibitors (inhibitors of proteins that cleave DNA) such as ICAD/DFF45.

The active form of caspase-3 is created when caspase-8 or caspase-9 cleaves procaspase-3, an inactive precursor, into a 17 kDa and a 12 kDa subunit (chains A and B in 1I3O.pdb, respectively).

Its active site contains a cysteine which directly attacks the substrate, cleaving the target protein at an aspartic acid residue; hence the name "cysteine-aspartic acid protease". Caspase-3 targets the specific substrate sequence DXXD, meaning that it requires an aspartic acid at the P1 and P4 positions relative to the cleavage site (which would be to the right of the second D).

When functional caspase-3 is not present, cells do not exhibit the traditional hallmarks of apoptosis – DNA fragmentation, chromatin condensation, and membrane blebbing.

Diablo

Diablo is the onsite model for Invitationals.

The Diablo homolog is an inhibitor of XIAP.

XIAP

XIAP is the onsite model for regionals, also based on file 1I3O.pdb.

XIAP is the X-linked Inhibitor of Apoptosis Protein, which inhibits apoptosis by binding to Caspase-3 (and other caspases) to prevent them from cleaving their substrates. It is called "X-linked" because the gene responsible for it is found on the X-chromosome.

XIAP is a competitive inhibitor (for caspase-3, at least; it has other inhibition mechanisms for other proteins), in that it binds directly to the active site of caspase-3, blocking the binding of its usual substrates.

Its BIR2 domain (the part that binds directly to caspase-3) contains a zinc finger in which one histidine and three cysteines coordinate a zinc ion.

PARP

PARP, or poly(ADP-ribose) polymerase, is the onsite model for state tournaments. PARP is part of a DNA repair pathway: it flags single-strand breakages in DNA by attaching poly(ADP-ribose) (PAR) to nearby proteins, bringing the DNA repair proteins to the site.

PARP consists of a DNA binding domain, an "automodification domain" (an area in which PARP can attach PAR to itself, which allows it to detach from DNA when its function is completed), and a catalytic domain, which does the actual PAR synthesis and attachment. The file on which this year's state tournament on-site is based (3OD8.pdb) contains only the DNA binding domain of PARP.

During the apoptosis cascade, caspase-3 cleaves PARP into two fragments – a 24 kDa piece that contains the DNA binding domain, and a much larger, 89 kDa piece that contains the catalytic and automodification domains. By detaching the DNA binding domain from the catalytic domain, this cleavage effectively inactivates PARP.

Inactivation of PARP prevents DNA repair, which facilitates the nuclear disassembly (DNA fragmentation, chromatin condensation, etc) that accompanies apoptosis. It is hypothesized that PARP inactivation may allow endonucleases, the proteins responsible for dismantling the DNA in an apoptotic cell, to better access the chromatin; alternately, or possibly at the same time, the now-cleaved DNA binding domain of PARP has been shown to bind irreversibly to single-strand breakages, preventing DNA repair enzymes from accessing the damage.

Because PARP requires NAD+ as a substrate, overactivation (or lack of full inactivation) of PARP in apoptotic cells can lead to ATP depletion. Even a normal amount of PARP remaining in the cell (such as in experiments where cells were made to express a mutant PARP that could not be cleaved by caspase-3 but was otherwise normally functional) consumes a massive amount of NAD+ in a cell undergoing apoptosis, because despite the efforts of the DNA repair proteins, DNA breakages accrue at an accelerating rate. ATP depletion leads to cell death as well, but via necrotic pathways (which can cause tissue damage) rather than apoptosis.

MHC

MHC is the onsite model for nationals.

Apoptosis

Apoptosis is the programmed death of a cell. It is triggered by signals either from mitochondria (i.e., the release of cytochrome c) or extrinsic signals caused by exposure to radiation, etc. In the process of apoptosis, structural and DNA-repair proteins are broken down.